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A B S T R A C T   

Choosing a suitable process-oriented eco-hydrological model is essential for obtaining reliable simulations of 
hydrological processes. Determining soil hydraulic and solute transport parameters is another fundamental 
prerequisite. Research discussing the impact of considering evaporation fractionation on parameter estimation 
and practical applications of isotope transport models is limited. In this study, we analyzed parameter estimation 
results for two datasets for humid and arid conditions using the isotope transport model in HYDRUS-1D, in which 
we either did or did not consider fractionation. The global sensitivity analysis using the Morris and Sobol’ 
methods and the parameter estimation using the Particle Swarm Optimization algorithm highlight the significant 
impact of considering evaporation fractionation on inverse modeling. The Kling-Gupta efficiency (KGE) index for 
isotope data can increase by 0.09 and 1.49 for the humid and arid datasets, respectively, when selecting suitable 
fractionation scenarios. Differences in estimated parameters propagate into the results of two practical appli
cations of stable isotope tracing: i) the assessment of root water uptake (RWU) and drainage travel times (i.e., the 
time elapsed between water entering the soil profile as precipitation and leaving it as transpiration or drainage) 
in the lysimeter (humid conditions) and ii) evaporation estimation in a controlled experimental soil column (arid 
conditions). The peak displacement method with optimized longitudinal dispersivity provides much lower travel 
times than those obtained using the particle tracking algorithm in HYDRUS-1D. Considering evaporation frac
tionation using the Craig-Gordon (CG) and Gonfiantini models is likely to result in estimates of older water ages 
for RWU than the no fractionation scenario. The isotope mass balance method that uses the isotopic composition 
profile simulated by HYDRUS-1D while considering fractionation using the CG and Gonfiantini models, or the 
measured evaporation isotope flux, provides comparable results in evaporation estimation as the HYDRUS-1D 
water mass balance method and direct laboratory measurements. In contrast, the no fractionation scenario 
reasonably estimates evaporation only when using the HYDRUS-1D water mass balance method. The direct use 
of simulated isotopic compositions in the no fractionation scenario may result in large biases in practical ap
plications in the arid zone where evaporation fractionation is more extensive than in humid areas.   

1. Introduction 

Reliable water balance simulations in the vadose zone are important 
to understand and forecast the impact of anthropogenic disturbances 
such as global warming and land-use change on soil water storage, 
groundwater recharge, and evapotranspiration. A detailed mechanistic 
understanding of water fluxes in the vadose zone could support optimal 
and efficient management strategies for promoting the long-term 

sustainability of water resources and associated ecosystem functions 
(Penna et al., 2018). For example, the exact quantification of evapora
tion affects water availability for plants (Nelson et al., 2020) and con
strains groundwater recharge (Condon et al., 2020). However, the 
conventional methods (e.g., pan experiments) for estimating evapora
tion fluxes often require extensive field monitoring of water flow, which 
is often time-consuming, expensive, labor-demanding, and affected by 
considerable uncertainty (Skrzypek et al., 2015). 
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Stable isotopes of hydrogen (2H) and oxygen (18O) are widely used to 
trace water fluxes across the critical zone and can be expressed as iso
topic ratios, 2H/1H and 18O/16O by using the δ notation (i.e., δ2H and 
δ18O). The isotopic composition of shallow soil water provides insights 
into evaporation fractionation characteristics. This information can be 
easily used to calculate corresponding evaporation fluxes. For example, 
Skrzypek et al. (2015) combined the equations for evaporation estima
tion based on the revised Craig-Gordon model (Craig and Gordon, 1965) 
and developed a software Hydrocalculator. Using this software, they 
estimated evaporation losses and validated its results using pan mea
surements. This method has been extended to soil evaporation estima
tion. For example, Sprenger et al. (2017) estimated that evaporation was 
about 5 and 10% of infiltrating water in the heath and Scots pine soils, 
respectively. 

While the spatial origin of the water plants use has been widely 
studied (e.g., Allen et al., 2019), very little is known about its temporal 
origin (Brinkmann et al., 2018; Miguez-Macho and Fan, 2021). To track 
water across the critical zone, we need to assess how fast water moves 
down to the soil profile bottom and when and how much water returns 
to the atmosphere through root water uptake (RWU). The premise is to 
accurately estimate travel times (TT) of irrigation/precipitation water (i. 
e., the time between water entering the soil profile as irrigation/pre
cipitation and leaving it back to the atmosphere as transpiration or at the 
soil profile bottom as drainage). 

The peak displacement method represents the most widespread 
technique to estimate travel time from the time difference between 
signals in soil water stable isotope time-series directly measured at 
specific soil depths (Chesnaux and Stumpp, 2018; Koeniger et al., 2016; 
Stumpp et al., 2012). However, this method is unfeasible when there is 
no pronounced peak correspondence between isotopic compositions of 
precipitation and drainage water samples. Another widely-used isotope- 
transport-based method is to inversely estimate the parameters for time- 
invariant TT distributions (TTDs) (e.g., Timbe et al., 2014) or time- 
variant StorAge Selection (SAS) functions (Benettin and Bertuzzo, 
2018; Harman, 2015; Rinaldo et al., 2015) implemented in lumped 
hydrological models. Such oversimplified models are based on few soil 
and vegetation parameters but have limitations in describing transient 
conditions or simulating isotope transport (Sprenger et al., 2016b). 

In contrast, isotope transport can be reliably simulated using the 
Richards equation-based hydrological models with appropriate soil and 
vegetation parameters and known boundary and initial conditions. 
However, direct measurements of soil hydraulic and transport parame
ters required by such models are time-consuming and labor-demanding. 
Therefore, such parameters are commonly obtained using inverse 
modeling by minimizing the errors between easily-measured state var
iables and fluxes (e.g., soil water contents and pressure heads at different 
soil depths or leachate water volumes) and corresponding model simu
lations (Hopmans et al. 2002; Mertens et al., 2006; Vrugt et al., 2008; 
Wollschlager et al., 2009; Wohling and Vrugt, 2011). 

Nevertheless, it is not always necessary to account for all model 
parameters in parameter optimization since some can be fixed as they 
can be either determined experimentally or have a minor impact on the 
model output. The latter can be determined using the global sensitivity 
analysis (GSA). The Sobol’ and Morris methods are among the two most 
widespread GSA methods (Liu et al., 2020). The Sobol’ method provides 
the most accurate sensitivity indices, but it requires several model runs 
and is thus computationally intensive (Gatel et al., 2019). In contrast, 
the Morris method cannot yield the order of the most sensitive param
eters as accurately as the Sobol’ method, but its computational cost is 
much lower, and it can still pinpoint the most influential parameters 
(Campolongo et al., 2007; Herman et al., 2013). 

Many inverse modeling algorithms can be used for parameter esti
mation. For example, the Levenberg-Marquardt Optimization (LMO) 
proved to be very efficient and was, therefore, implemented in HYDRUS 
(Šimůnek et al., 2008). However, the LMO is sensitive to the initial 
parameter values provided by the user and often falls into local instead 

of global minimum (Brunetti et al., 2016). Thus, global optimization 
algorithms, such as Particle Swarm Optimization (PSO), have become 
more widespread over the last decades (e.g., Vrugt and Robinson, 2007). 

When optimizing isotope transport parameters via inverse modeling, 
isotopic compositions from multiple soil depths must be included in the 
objective function and combined with other state variables and fluxes. 
For example, research shows that the model calibration can be improved 
by simultaneously considering stable isotopes and soil moisture infor
mation (Sprenger et al., 2015; Groh et al., 2018; Mattei et al., 2020). 
However, the correct model structure is a fundamental prerequisite to 
obtaining successful simulations. In particular, research discussing the 
impact of considering evaporation fractionation on parameter estima
tion and practical applications of isotope transport models is limited 
(Penna et al., 2018). Therefore, we pose two scientific questions. First, 
how will the consideration of evaporation fractionation affect the 
parameter estimation results of the isotope transport model? Second, 
how will this effect propagate into practical applications such as water 
travel times and evaporation estimation? 

To answer these questions, we compare the parameter estimation 
results obtained using the isotope transport model in HYDRUS-1D (Zhou 
et al., 2021) that does or does not consider evaporation fractionation for 
two available datasets: 1) a 150-cm-thick layered soil profile in a 
lysimeter under humid climate where evaporation fractionation is 
negligible; 2) a 35-cm-thick soil column subject to evaporation where 
evaporation fractionation process is dominant. The accuracy of the 
parameterization obtained by the PSO algorithm is assessed based on its 
ability to reproduce measured water fluxes and isotope transport data. 
The parameters estimated while considering (or not) evaporation frac
tionation are then used to calculate travel times and evaporation. 

2. Materials and methods 

Two experimental datasets are considered in this study. The first 
dataset is collected using a field lysimeter (150-cm-thick layered soil 
profile) located in Austria under humid climate conditions (Stumpp 
et al., 2012) (Section 2.1.1). The second dataset is collected using a 35- 
cm-thick soil column (in France) subject to evaporation to mimic arid 
climate conditions (Braud et al., 2009a) (Section 2.1.2). Numerical 
simulations of water flow and isotope transport (with and without 
evaporation fractionation) are implemented in HYDRUS-1D. The 
modeling setup is briefly described in Section 2.2 and Method S1 in the 
Supplementary Material. The sensitivity analysis based on the Sobol’ 
and Morris methods is performed to evaluate the interactions between 
soil hydraulic and solute transport parameters and the impact of mul
tiple measured data types (Section 2.3, Method S2, and Results S1~S2). 
The accuracy of the parameterization obtained by the PSO algorithm is 
assessed based on its ability to reproduce the observed data (Sections 
2.4, 3.1.1, and 3.2.1). The parameters estimated while considering or 
not considering evaporation fractionation are then used to calculate 
travel times and evaporation and quantify the impact of their different 
estimates (Sections 2.5, 2.6, 3.1.2, and 3.2.2). The effects of varying 
climate conditions and estimation methods are then compared and 
illuminated (Section 4). 

The schematic outline of the different methods used is shown in 
Fig. 1. 

2.1. Site description and data availability 

2.1.1. Stumpp et al. (2012) dataset 
The first dataset is taken from the lysimeter 3 of Stumpp et al. (2012) 

(available at https://www.pc-progress.com/en/Default.aspx? 
h1d-lib-isotope). The field experiment was conducted in a humid re
gion located at the research area of the HBLFA (Höhere Bundeslehr- und 
Forschungsanstalt für Landwirtschaft) Raumberg-Gumpenstein, in 
Gumpenstein, Austria. This area has a mean annual temperature of 
6.9 ◦C and average annual precipitation (P) of 1035 mm. The annual 
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potential evapotranspiration (ET0) (for grass reference) during the 
experiment period (May 2002 to February 2007) calculated by the 
Penman-Monteith equation is about 557 mm, and the corresponding 
aridity index (P/ET0) is about 1.86, corresponding to a humid climate 
class (Liang, 1982). The cylindrical lysimeter (with a depth of 150 cm 
and a surface area of 10000 cm2) was embedded in a rainfed agricultural 
field (Cambisol) planted with winter rye and fertilized with liquid cattle 
slurry. 

The observation period was from May 2002 to February 2007 (1736 
days). Table S1 shows the summary of the observed data. The temporal 
distribution of P, ET0, soil surface temperature (Ts), air relative humidity 
(RH), and leaf area index (LAI) during the simulation period are shown 
in Fig. 2. More details about data acquisition, including meteorological 
parameters and root water uptake information, can be found in Stumpp 
et al. (2012). 

2.1.2. Braud et al. (2009a) dataset 
Braud et al. (2009a) designed a RUBIC IV experiment that started on 

April 11, 2005, corresponding to Day of the Year (DoY) 101, and lasted 

338 days. The experiment consisted of 6 columns, 12 cm in diameter and 
35 cm in height. The soil columns were filled with a silt loam collected at 
the field station of Lusignan, France, and wetted using demineralized 
water of the known isotopic composition. The bottom was closed by clay 
marbles. The soil was initially saturated and subject to evaporation only. 
Dry air was simultaneously injected over all six columns. The isotopic 
composition of the air changed due to water vapor released by evapo
ration from soil columns. The air was finally trapped in a cryoscopic 
device, which allowed the determination of evaporation fluxes from 
bare soil columns and the corresponding isotopic composition of the 
water vapor under non-steady-state conditions. More details about the 
experimental setup can be found in Figs. 1~2 of Braud et al. (2009a). 
The data collected in Column 2, ending at DoY 264, were analyzed in 
this study. 

Thirteen variables were measured continuously at a frequency of 
about 15 min to assess the water balance of the soil column. These 
variables included the room temperature, the atmospheric pressure, the 
absolute pressure of the dry air before it entered the soil column, air 
mass flow for the humidity control above the soil column, the mass of 
the soil column, air temperature and humidity at the outlet of the soil 
column, the temperatures of the cryoscopic trapping downstream and 
upstream of the columns, and the air temperature and residual air hu
midity at the outlets of two cold traps. The vapor was trapped twice a 
day during the first three months and only once a day after that once 
evaporation decreased. Soil column 2 was dismantled on September 21, 
2005 (DoY 264) to sample liquid water and measure the gravimetric soil 
water content. More details about data acquisition can be found in Braud 
et al. (2009a). The temporal distributions of the evaporation flux (E), the 
isotopic composition of the evaporation flux (δE), outlet air temperature 
(Tair), and outlet air relative humidity (RH) during the simulation period 
are shown in Fig. 3. 

2.2. Model setup 

The HYDRUS-1D model modified by Zhou et al. (2021) to simulate 
the transport of soil water isotopes while considering evaporation 
fractionation was used in this study. A brief summary of the model setup, 
including the governing equations (without and with vapor flow for the 
Stumpp et al. (2012) and Braud et al. (2009a) datasets, respectively), 
boundary conditions (BCs), and model inputs is shown in Figs. 4~5. 
More details can be found in Zhou et al. (2021). 

2.2.1. Stumpp et al. (2012) dataset 
The soil profile was 150 cm deep and was discretized into 151 nodes. 

It consisted of three different soil horizons (0 ~ 29 cm; 30 ~ 89 cm; 90 
~ 150 cm). The initial pressure head profile was assumed to be at hy
drostatic equilibrium with the pressure head h = − 150 cm at the soil 

Fig. 1. Schematic outline of methods used.  

Fig. 2. The temporal distribution of precipitation (P) (a), potential evapo
transpiration (ET0) (b), soil surface temperature (Ts) (c), air relative humidity 
(RH) (d), and leaf area index (LAI) (e) during the simulation period for the 
Stumpp et al. (2012) dataset 
(adapted from Stumpp et al., 2012). 

T. Zhou et al.                                                                                                                                                                                                                                    
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surface. The weighted average δ18O of precipitation (− 9.5‰) and esti
mated temperature (20 ℃) were used as initial conditions. 

The atmospheric (with a surface layer) and seepage face boundary 
conditions (BC) were used for water flow at the upper and lower 
boundaries, respectively. The temperature BC was used for heat trans
port at both boundaries. In this humid condition example, evaporation 
fractionation was limited to the soil surface due to the lack of the vapor 
phase within the soil. The solute flux and zero concentration gradient 
BCs were used for isotope transport at the upper and lower boundaries, 
respectively. The isotope flux associated with evaporation was calcu
lated either assuming no fractionation or using the Craig-Gordon or 
Gonfiantini fractionation models (hereafter referred to as Non_Frac, 
CG_Frac, and Gon_Frac, respectively). The Non_Frac scenario calculated 

the isotope flux of evaporation by assuming that the isotopic composi
tion of the evaporation flux was the same as that of surface soil water. 
The isotopic composition of the atmospheric water vapor (δA) in the 
CG_Frac scenario was estimated based on its equilibrium relationship 
with the isotopic composition of rainfall (Skrzypek et al., 2015). The 
Gon_Frac scenario was simplified (without the need for the isotopic 
composition of the atmospheric water vapor) to consider fractionation 
(Zhou et al., 2021). A detailed description of the CG and Gonfiantini 
models can be found in Method S1. For simplification, only equilibrium 
fractionation was considered at the soil surface since kinetic fraction
ation could be neglected in this example (Zhou et al., 2021). In other 
words, the kinetic fractionation coefficient (nk) in Eq. (11) of Zhou et al. 
(2021) was set to 0, and thus the kinetic fractionation factor at the soil 
surface (αk

i ) in the CG_Frac and Gon_Frac scenarios (Eqs. S2, S3) was 
equal to 1. 

2.2.2. Braud et al. (2009a) dataset 
The simulated soil profile was 35 cm deep and was discretized into 

132 nodes following Braud et al. (2009a). The soil column was initially 
almost fully saturated, with the measured initial pressure head increased 
linearly from − 1 cm at the soil surface to 35 cm at the soil profile bot
tom. The observed initial soil temperature and δ18O were 24.25 ℃ and 
− 6.34‰, respectively. 

The temperature BC was used for heat transport at both surface and 
bottom boundaries, using temperatures measured at 2.5 and 24 cm 
depths, respectively. The atmospheric and zero flux BCs were used for 
water flow at the upper and lower boundaries, respectively. The 
measured evaporation flux, E was used as the upper BC for water flow. In 
this arid condition example, evaporation fractionation occurred both at 
the soil surface and within the soil due to the existence of the vapor 
phase. The stagnant air layer BC (which had been modified to account 
for evaporation fractionation) and zero flux BC were used for isotope 
transport at the upper and lower boundaries, respectively. The surface 
isotope flux associated with evaporation was calculated either assuming 
no fractionation, using the Craig-Gordon or Gonfiantini fractionation 
models, or using the measured values (hereafter referred to as Non_Frac, 
CG_Frac, Gon_Frac, and Meas_Frac, respectively). The Non_Frac scenario 
calculated the isotope flux of evaporation by assuming that its isotopic 
composition was the same as that of surface soil water (i.e., no frac
tionation at the soil surface), and equilibrium and kinetic fractionation 
factors within the soil (α+, αD

i ) were equal to 1 (i.e., no fractionation 

Fig. 3. Time series of the evaporation flux (E) (a) isotopic composition of the 
evaporation flux (δE) (b), outlet air temperature (Tair) (c), outlet air relative 
humidity (RH) (d), during the simulation period for the Braud et al. (2009a) 
dataset 
(adapted from Braud et al., 2009a). 

Fig. 4. Model setup for the Stumpp et al. (2012) dataset. Note that “W,” “H,” and “I” represent water flow, heat transport, and isotope transport, respectively.  

T. Zhou et al.                                                                                                                                                                                                                                    
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within the soil). The theory of CG_Frac and Gon_Frac scenarios was 
explained in Method S1. For simplification, the kinetic fractionation 
coefficient nk in Eq. (11) of Zhou et al. (2021) was set to 1, and thus the 
kinetic fractionation factor at the soil surface (αk

i ) in the CG_Frac and 
Gon_Frac scenarios (Eqs. S2, S3) was equal to 1.0324. The measured 
isotopic composition of the outlet water vapor, δE, was used in the 
Meas_Frac scenario to calculate the surface isotope flux Ei corresponding 
to the evaporation flux E. More details about how upper boundary fluxes 
were calculated can be found in Braud et al. (2009a). 

2.3. Global sensitivity analysis 

Five soil hydraulic parameters (i.e., θr, θs, n, α, and Ks) need to be 
optimized for each layer of the soil profile to simulate water flow using 
the HYDRUS-1D model. The residual water content θr was set to zero to 
reduce the number of fitting parameters. To simulate isotope transport 
in the soil, the longitudinal dispersivity λ also needs to be optimized. 
Since only the isotopic composition of the lysimeter discharge was 
measured in the Stumpp et al. (2012) dataset, the dispersivity of three 
individual soil layers cannot be estimated. Therefore, only one longi
tudinal dispersivity for the entire lysimeter was estimated. Therefore, 
the total number of parameters p was 13 and 5 for the Stumpp et al. 
(2012) and Braud et al. (2009a) datasets, respectively. The global 
sensitivity analysis (GSA) using both Morris and Sobol’ methods was 
conducted in this study to determine the most influential parameters and 
their interactions. The detailed description of these two methods is 
shown in Method S2 in the Supplementary Material. 

The sensitivity analysis was conducted using Python’s Sensitivity 
Analysis Library (SALib) (Herman and Usher, 2017). The script produces 
the input parameter space, overwrites the input parameters file, and 
runs the executable module of HYDRUS-1D. For each simulation of the 
Stumpp et al. (2012) dataset, five Kling-Gupta efficiency (KGE) indices 
for different evaluation indicators were calculated, including for the 
time series of the bottom water flux (KGE_bf), the soil water content at 
different depths (KGE_wc), the bottom water isotopic composition 
(KGE_wi), the water retention curves (KGE_rc), and the average of the 
four KGE values (KGE_avg). For each simulation of the Braud et al. 
(2009a) dataset, three Kling-Gupta efficiency (KGE) indices for different 
evaluation indicators were calculated, including the final soil water 
content profile (KGE_wc), the final water isotopic composition profile 
(KGE_wi), and the average of the two KGE values (KGE_avg). The KGE 
index compares the correlation coefficient (r), the ratio of mean values 
(β), and the ratio of variances (γ) between simulated and observed data. 
The value of the KGE index is always smaller or equal to 1. The higher 
the KGE value, the better fit between the simulated and observed values. 
The positive and negative KGE values are often considered “good” and 

“bad” solutions (Knoben et al., 2019). 

KGE = 1 − [(1 − r)2
+ (1 − β)2

+ (1 − γ)2
]
0.5 (1) 

If a HYDRUS-1D run was not finished within a prescribed time (i.e., 
30 s and 60 s for the Stumpp et al. (2012) and Braud et al. (2009a) 
datasets, respectively) or the length of the modeled hydrograph was 
shorter than the total simulation period (1736 and 163 days for the 
Stumpp et al. (2012) and Braud et al. (2009a) datasets, respectively), it 
was considered non-convergent. The run was then terminated, and a 
large negative value (− 1E + 7) was prescribed to the objective function. 

Non-convergent runs in GSA are a frequent problem when using 
nonlinear environmental/hydrological models, and there are no clear 
indications on how to handle these “unfeasible” points (Razavi et al., 
2021). Removing or skipping them alters the sampling trajectory and 
can result in biased conclusions, especially if non-convergent runs lie in 
informative regions of the parameter space. Recently, Sheikholeslami 
et al. (2019) compared strategies such as median substitution, single 
nearest-neighbor, or response surface modeling (Brunetti et al., 2017) to 
fill in for model crashes. Their results show that interpolating non- 
convergent runs with a radial basis function trained in the vicinity of 
that point leads to reliable results and outperforms other strategies. We 
implemented a similar approach in the present work but with important 
differences. In particular:  

1. For each non-convergent point, we calculated its Euclidean distance 
from all other convergent points in the GSA sample.  

2. Convergent points were ordered in ascending order (i.e., from the 
closest to the farthest).  

3. The 100 closest convergent points were used to train a response 
surface surrogate based on the Kriging Partial Least Squares method 
(KPLS) (Bouhlel et al., 2016), which outperforms traditional kriging 
on high-dimensional problems.  

4. The trained KPLS surrogate was finally used to interpolate non- 
convergent runs in the original GSA sample. 

The use of multiple localized surrogates allowed for better recon
struction of the topological features of the response surface in the vi
cinity of the non-convergent points. 

In this study, the global sensitivity analysis was combined with the 
Monte Carlo filtering to identify reduced ranges of parameters with good 
solutions for subsequent parameter optimization. Potential solutions 
were filtered into good solutions with KGE > 0.0 and bad solutions with 
KGE ≤ 0.0. Kernel density estimation (KDE) plots were then used to 
identify areas with high-density good solutions, while the correlation 
analysis was conducted to determine interactions between parameters 
and may help reduce the input factor space. More details can be found in 

Fig. 5. Model setup for the Braud et al. (2009a) dataset. Note that “W,” “H,” and “I” represent water flow, heat transport, and isotope transport, respectively.  
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Brunetti et al. (2016). This type of procedure shares multiple similarities 
with the Generalized Likelihood Uncertainty Estimation (GLUE) pro
posed by Beven and Freer (2001). The joint use of the GSA sample with 
the GLUE approach [i.e., GSA-GLUE (Ratto et al., 2001)] allows for 
obtaining a rough assessment of the parameters uncertainty and suc
cessful estimates of soil hydraulic parameters (e.g., Brunetti et al., 
2018). 

2.4. Parameter optimization 

The Particle Swarm Optimization (PSO) algorithm was used in this 
study for parameter optimization. In the PSO, a swarm of candidate 
solutions is moved around in the search space according to a few 
equations. The movement of the particles is guided by the optimal po
sition of themselves and the whole swarm. Once improved positions are 
discovered, they are used to guide the swarm’s movement. This process 
is repeated until the global optimal position that all particles tend to 
follow is found (Shi and Eberhart, 1998). 

The PSO parameters (cognitive parameter c1 = − 0.267; social 
parameter c2 = 3.395; inertia-weight w = − 0.444) from Brunetti et al. 
(2016) were used in this study. The number of particle swarm and it
erations are 40 and 200, respectively. 

The PySwarm Library in Python was used for the PSO. The process 
was similar to the GSA, except that reduced ranges of parameters were 
used. In this way, the number of potential local minima is reduced, and 
the convergence improves. Only the set of parameters leading to the 
maximum KGE_avg (i.e., minimum 1-KGE_avg as the objective function) 
was retained as optimized parameters. 

2.5. First practical application: Calculation of drainage and RWU travel 
times 

2.5.1. The peak displacement (isotope-transport-based) method 
The peak displacement method estimates travel times from the time 

lag between signals in the measured input (rainfall isotopic composi
tion) and output (drainage isotopic composition) isotope time series. In 
the Stumpp et al. (2012) dataset, a pronounced correspondence was 
observed between the depleted precipitation peak in the winter 
(November 18, 2005, to April 14, 2006) and the lysimeter discharge. 
The mean drainage travel time t*o [T], accounting for dispersion effects, 
can be calculated by the mean peak isotopic composition lag time t*m [T] 
using Eq. (2): 

t*o =
t*m̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (3λ
L)

2
√

− 3 λ
L

(2)  

where L is the lysimeter length [L]. More details can be found in Stumpp 
et al. (2012). In this study, t*

m from Stumpp et al. (2012) and dis
persivities λ optimized using HYDRUS-1D assuming different fraction
ation scenarios were used. 

2.5.2. The particle tracking (water-flow-based) method 
The particle tracking algorithm is based on the water mass balance 

calculation. The initial position of the particles is defined using the 
initial water content distribution. Depending on the precipitation/irri
gation inputs, the particles may be released at the soil surface and leave 
at the soil profile bottom. In this study, the input parameters wStand (the 
initial distribution) and wPrec (the upper BC distribution) for the particle 
tracking algorithm were set to 10 cm and a negative number (which 
triggers the option of releasing particles with each rain event), respec
tively. More details about the particle tracking algorithm can be found in 
Šimůnek (1991) or Zhou et al. (2021). 

When knowing the positions of the particles at different times, the 
residence time (RT) and locations of water from all precipitation/irri
gation events can be obtained, i.e., the residence time distribution 

(RTD). Note that the particle travel time (TT) is the sum of the particle 
age (i.e., residence time) and life expectancy (i.e., time to reach the 
destination). The former is the time elapsed since the particle release, 
while the latter is the remaining time before the particle reaches the 
outlet (Benettin et al., 2015). Therefore, when the particles leave the 
lysimeter bottom or as root water uptake (RWU), their residence times 
can be called drainage or RWU travel times, respectively. The particle 
tracking module additionally assesses RWU between two neighboring 
particles as a function of time. When particles are released for each 
precipitation event, we can precisely evaluate the contribution of each 
precipitation event to RWU at different times. We can then infer the 
temporal origin of RWU by synthesizing this information. Different 
fractionation scenarios with the soil hydraulic parameters optimized 
using HYDRUS-1D were used to run the particle tracking module to 
calculate drainage and RWU travel times. 

2.6. Second practical application: Calculation of evaporation flux 

2.6.1. The water-flow-based method 
Braud et al. (2009a) calculated evaporation using three methods. 

The first method determines the evaporation rate by continuously 
measuring the vapor flux and humidity at the outlet of the soil column. 
The second method obtains the evaporation rate by repeatedly weighing 
the soil column. Finally, the third method determines the evaporation 
rate by weighting the mass of the frozen water trapped at the outlet of 
the soil column. These three methods are hereafter referred to as direct 
measurement, column weighting, and trapped volume, respectively. 
This study presents these results also as the reference for other methods. 
More details can be found in Braud et al. (2009a). Another water-flow- 
based method used in this study to calculate water flux components was 
to analyze the water mass balance simulated in HYDRUS-1D (e.g., 
Sutanto et al., 2012). 

2.6.2. The isotope-transport-based method 
For an isolated water volume with an initial isotopic composition, δ0 

(‰) evaporating into the atmosphere, the isotopic composition of the 
residual liquid water δs (‰) can be calculated as (Benettin et al., 2018): 

δs = (δ0 − δ*)(1 − FE)
xm
+ δ* (3)  

where δ* (‰) is the limiting isotopic composition that would be 
approached when water is drying up, xm is the temporal enrichment 
slope (–), and FE is described below. 

Eq. (3) is based on the isotope mass balance equations of Gonfiantini 
(1986) and the isotopic composition of the evaporation flux estimated 
by the Craig–Gordon model (Craig and Gordon, 1965). More details 
about the derivations can be found in Gonfiantini (1986). This equation 
implies that the isotopic composition of soil water only changes due to 
evaporation fractionation. The ratio of the evaporation loss to the initial 
water storage (FE) can be then estimated as (Sprenger et al., 2017): 

FE = 1 − [
(δs − δ*)

(δ0 − δ*)
]

1
xm (4) 

The two variables δ* and xm can be calculated as (Benettin et al., 
2018): 

δ* =
(RH⋅δA + εk + ε+/α+)

(RH − 10− 3(εk + ε+/α+))
(5)  

xm =
(RH − 10− 3(εk + ε+/α+))

(1 − RH + 10− 3εk)
(6)  

where δA (‰) is the isotopic composition of the atmospheric water 
vapor, RH is the air relative humidity, α+ (–) is the dimensionless 
equilibrium fractionation factor, while ε+ (‰) and εk (‰) are equilib
rium and kinetic fractionation enrichments, respectively. Details about 
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the calculation procedure for these parameters (α+, ε+, εk) can be found 
in Benettin et al. (2018) or Zhou et al. (2021). The equivalent kinetic 
fractionation factor within the soil (αD

i ) used to calculate εk was opti
mized manually to get the best match of FE with those from water-flow- 
based methods in Section 2.6.1. 

The fraction of water that evaporated before the end of the Braud 
et al. (2009a) experiment was calculated in this study. Average 
measured values of RH, Tair, Ts, and δ0 during the experiment, and the 
final isotope profile simulated using HYDRUS-1D were used in the above 
equations. 

3. Results 

3.1. Stumpp et al. (2012) dataset analysis 

3.1.1. Parameter optimization and model performance 
The global sensitivity analysis and Monte-Carlo filtering results for 

the Stumpp et al. (2012) dataset are shown in the Results S1 section of 
the Supplementary Material. Overall, soil hydraulic parameters of 
different layers had comparable impacts on the model outputs. The 
order of sensitive parameters is: shape parameters of the water retention 
function, namely n, and α, saturated water content θs, saturated hy
draulic conductivity Ks, and dispersivitie λ. The final optimized soil 
hydraulic and solute transport parameters and corresponding KGEs are 
shown in Table 1. Considering evaporation fractionation impacted 
parameter estimation significantly, especially in the optimization of the 
soil saturated hydraulic conductivity, Ks, and shape parameter, α. 
Overall, the water retention and soil hydraulic conductivity curves 
(Fig. S8) differed greatly between different fractionation scenarios in the 
third layer, but were relatively similar in the first and second layers. The 
water retention curve in the Gon_Frac scenario best matched the 
measured one, but did not outperform those from the CG_Frac and 
Non_Frac scenarios, as seen from the KGE_rc values in Table 1. 
Compared with the CG_Frac and Gon_Frac scenarios, the water retention 
curve in the Non_Frac scenario had a steeper decline and a lower satu
rated water content in the third layer, while it became more gradual 
with higher saturated water contents in the first and second layers. 
However, the Non_Frac scenario always produced higher hydraulic 
conductivities than the CG_Frac and Gon_Frac scenarios (Note that the 
Non_Frac scenario also had higher hydraulic conductivities in the third 
layer because of relatively higher matric potentials). 

The fits for different fractionation scenarios are shown in Fig. 6. The 
isotopic composition of the lysimeter discharge remained the same for 
different fractionation scenarios during about the first 150 days and 
started deviating after this time, but the trends were still similar except 
for some vertical shifts. Different fractionation scenarios resulted in a 
similar average fitting performance (KGE_avg) (within 0.03). The 
Non_Frac scenario had the highest KGE_wi (i.e., for water isotopic 
composition), followed by the CG_Frac scenario, while the Gon_Frac 
scenario performed the worst. The difference between KGE_wi indices 
for different fractionation scenarios was within 0.09. 

3.1.2. First practical application: Drainage travel times and RWU temporal 
origin 

The mean travel times (MTTs) of drainage (i.e., from the surface to 
the bottom) estimated by the peak displacement method are shown in 
Table 2. The MTTs were 251.9, 251.9, and 257.1 days for the Non_Frac, 
CG_Frac, and Gon_Frac scenarios, respectively. The consideration of 
fractionation using the Gonfiantini model slightly overestimated the 
travel times compared to the Non_Frac scenario. However, the difference 
was not very evident (within 6 days) for different fractionation 
scenarios. 

Fig. S9 shows the spatial–temporal distribution of particles simulated 
using the soil hydraulic parameters estimated considering different 
fractionation scenarios. The residence time distribution (RTD) of soil 
water is displayed in Fig. 7. The mean residence time (MRT – the mean of 
RTs averaged over the entire simulation duration) increased with soil 
depth in all scenarios due to a time lag involved in water transfer. The 
MRTs for the Non_Frac scenario for depths of 30, 70, and 110 cm were 
82.1, 138.2, and 203.6 days, respectively. The MRTs for the CG_Frac 
scenario for 30, 70, and 110 cm depths were 69.9, 170.0, and 258.5 
days, respectively. Finally, the MRTs for the Gon_Frac scenario for 30, 
70, and 110 cm depths were 80.6, 174.3, and 270.6 days, respectively. 
In terms of temporal distribution, RTs showed five distinct seasonal 
cycles. Specifically, they had a trough after every rainy season and a 
peak after every dry season, showing a pronounced lag effect. In other 
words, RTs were determined by the trade-off between precipitation 
input and evapotranspiration removal. 

Corresponding travel times of drainage are shown as probability 
density distribution histograms in Fig. S10 and summarized in Table 2. 
The means (and standard deviations) of travel times were 297.5 (79.96), 
356.8 (104.29), and 369.9 (101.24) days for the Non_Frac, CG_Frac, and 
Gon_Frac scenarios, respectively. The particle tracking method pro
duced significantly higher travel times (by about 89 days) than the peak 
displacement method. Similarly, considering fractionation using the 
CG_Frac and Gon_Frac scenarios led to longer travel times (TTs) than the 
Non_Frac scenario. In addition, the difference was very evident (reached 
72 days) for different scenarios. 

To further explore and quantify the RTD differences when consid
ering different fractionation models, the temporal origin of RWU is 
plotted in Fig. 8. Fig. 8 shows the monthly transpiration sums in the 
upper panels and fractional contributions of water of a certain age/ 
origin to these monthly transpiration sums in the lower panels. Note that 
the amount and temporal distribution of transpiration were similar 
under different fractionation scenarios (54.95, 53.91, and 54.03 cm for 
Non_Frac, CG_Frac, and Gon_Frac, respectively). Therefore, only the 
temporal distribution of transpiration in the Non_Frac scenario is dis
played. As for the age distribution of RWU, for example, in the Non_Frac 
scenario, the yellow line in 2002 indicates that about 29% of the water 
taken up by roots in August was older than May, while the remaining 
71% was from May ~ August of 2002 (5% from June, 16% from July, 
and 50% from August). More details about how to read the age distri
bution of RWU can be found in Fig. 5 of Brinkmann et al. (2018). 

Table 1 
Optimized parameters and Kling-Gupta efficiency (KGE) indices (bf, wc, wi, and avg refer to the bottom flux, water content, water isotopic composition, and average, 
respectively) for different fractionation scenarios (Non_Frac, CG_Frac, and Gon_Frac) (for the Stumpp et al. (2012) dataset).  

Fractionation scenario z θr θs α n Ks λ KGE_bf KGE_wc KGE_wi KGE_rc KGE_avg  

cm cm3/ cm3 cm3/ cm3 cm− 1  – cm/d cm      
Non_Frac 0–30 0 0.31 0.010  1.19 83.6 5.00 0.99 0.47 0.59  0.73 

31–90 0 0.43 0.293  1.11 1131.71  0.87 
91–150 0 0.30 0.009  1.91 85.16  

CG_Frac  0–30 0 0.30 0.020  1.15 220.00       
31–90 0 0.41 0.300  1.11 287.24 5.00 0.99 0.54 0.58  0.89 0.75 
91–150 0 0.30 0.082  1.10 220.00       

Gon_Frac 0–30 0 0.30 0.026  1.14 220.00  
6.02  

0.99 0.45 0.50  0.72 
31–90 0 0.40 0.298  1.11 191.89  0.92 
91–150 0 0.35 0.300  1.12 220.00   
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The maximum water age for RWU for different fractionation sce
narios was almost the same, about 300 d in October 2002, 330 d in 
September 2003, 270 d in November 2004, and 180 d in February 2006, 
except for 240 d in December 2003 and 180 d in February of 2005 for the 
Non_Frac scenario. These results were consistent with water residence 
times at the maximum rooting depths in Fig. 7. However, different 
fractionation scenarios had relatively large impacts (up to three months) 
on the minimum water age for RWU. The most obvious example was the 
2003 growing season (a relatively dry year with less precipitation, as 
shown in Fig. 2). The minimum water age for RWU in 2003 was within 
about a month for the Gon_Frac scenario and 120 d (February) for the 
Non_Frac and CG_Frac scenarios. In addition, the dynamics of fractional 
monthly contributions to RWU also varied between different scenarios. 
In general, the water age for RWU was far longer in dry years (2003 ~ 
2004) than in wet years (2005 ~ 2006), suggesting that drought can 
promote crop uptake of old water. In the same growing season, the water 
age for RWU was consistently lower in May and June than in July and 
August, which reflected an increase in the rooting depth. 

3.2. Braud et al. (2009a) dataset analysis 

3.2.1. Parameter optimization and model performance 
The global sensitivity analysis and Monte-Carlo filtering results for 

the Braud et al. (2009a) dataset are shown in the Results S2 section of 
the Supplementary material. The most sensitive parameters were shape 
parameters n and saturated water contents θs. The final optimized soil 
hydraulic and solute transport parameters and corresponding KGEs are 
shown in Table 3. Considering (or not) evaporation fractionation also 
impacted parameter estimation significantly. The most significant im
pacts were on dispersivity,λ, and the shape parameter, α (Table 3). The 
soil water retention curves (Fig. S12) showed that the wilting points 
were almost identical for the Non_Frac and fractionation (CG_Frac, 
Gon_Frac, Meas_Frac) scenarios. However, the saturated water contents 
were higher, and water contents started to drop later in the fractionation 
scenarios than those in the Non_Frac scenario. The soil hydraulic con
ductivity curves (Fig. S12) showed that the saturated hydraulic con
ductivities were very similar, but the hydraulic conductivities in the 
fractionation scenarios were a little higher than those in the Non_Frac 

scenario. 
The fits of soil profile isotopic compositions for different fraction

ation scenarios are shown in Fig. 9. The Non_Frac scenario had an almost 
uniform isotopic composition profile. In this case, the parameter opti
mization depended mainly on the measured soil water content profile. In 
fractionation scenarios, the peak value of the isotopic composition 
profile in the Meas_Frac scenario was smaller than those in the Gon_Frac 
and CG_Frac scenarios, while the value of dispersivities was the oppo
site. Different fractionation scenarios resulted in significantly different 
average fitting performances (KGE_avg) (reached 0.72). The Meas_Frac 
scenario had the highest KGE_wi (i.e., for soil water isotopic composi
tion), followed by Gon_Frac and CG_Frac scenarios, while the Non_Frac 
scenario performed the worst. The difference between KGE_wi indices 
for different fractionation scenarios reached 1.49. 

3.2.2. Second practical application: Estimation of evaporation flux 
Table 4 shows cumulative evaporation obtained using different 

measurements and simulated considering different fractionation sce
narios. The average isotopic composition of the whole profile was 
calculated using soil water contents and the column depth as weights. 
Cumulative evaporation was estimated to account for about 64.4%, 
63.1%, and 65.6% of the initial soil water storage in the CG_Frac, 
Gon_Frac, and Meas_Frac scenarios, respectively. These values for the 
CG_Frac, Gon_Frac, and Meas_Frac scenarios were (slightly) lower than 
but comparable to laboratory measurements and the HYDRUS-1D water 
balance. Slight differences may have been caused by uncontrollable 
measurement errors in the isotopic composition of the atmospheric 
water vapor (δa in Eq. (5)), which is the most sensitive parameter in the 
isotope mass balance method (Skrzypek et al., 2015). Cumulative 
evaporation cannot be estimated using this method in the Non_Frac 
scenario since no isotopic enrichment occurred (i.e., δs = δ0 in Eq. (4)). 

4. Discussion 

4.1. Impacts of evaporation fractionation on parameter estimation and 
model performance 

For the Stumpp et al. (2012) dataset, as indicated in Section 3.1.1, 
the fractionation scenarios (CG_Frac and Gon_Frac) had lower hydraulic 
conductivities than the Non_Frac scenario. This is because fractionation 
decreases the isotope flux by evaporation compared with a no frac
tionation scenario (the isotopic composition of the evaporation flux 
cannot be greater than that of surface soil water) and thus increases the 
isotope flux by net infiltration. To get a good fit between simulated and 
observed isotopic compositions of discharge water, the inverse modeling 
yields a larger longitudinal dispersivity (to increase the dispersion of 
isotopes) (Table 1) or lower hydraulic conductivities (to decrease 
downward convection of isotopes) (Fig. S8). 

The simulated isotopic composition of the lysimeter discharge 
remained the same for different fractionation scenarios during about the 
first 150 d and started deviating after this time (Fig. 6). This suggests 
that it takes about 150 d before the impact of different treatments of the 

Fig. 6. Measured (symbols) and simulated discharge 18O isotopic compositions for different fractionation scenarios (for the Stumpp et al. (2012) dataset).  

Table 2 
Estimated mean travel times of drainage (t*

0) and mean water fluxes (v*
0) for 

different fractionation scenarios (Non_Frac, CG_Frac, and Gon_Frac) using 
different methods (peak displacement and particle tracking).  

Method Fractionation 
scenario 

t*0(d) v*
0 

(mm/ 
d) 

Ratio of t*0 compared 
to t*0 for Non_Frac 

Peak 
displacement 

Non_Frac  251.9  5.95  
CG_Frac  251.9  5.95 0% 
Gon_Frac  257.1  5.83 2.06% 

Particle 
tracking 

Non_Frac  297.5  5.04  
CG_Frac  356.8  4.20 19.93% 
Gon_Frac  369.9  4.05 24.33%  
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upper BC for isotope transport propagates to the soil profile bottom and 
affects the isotopic composition in drainage water (Zhou et al., 2021). 
This time interval (i.e., about 150 d) is much smaller than the travel time 
of the first particle (released at the soil surface) as calculated by the 
particle tracking method (Fig. S9). This is because the particle tracking 
algorithm considers only piston flow, while dispersion accelerates the 
arrival of isotopes to the soil profile bottom. However, the trends are still 
similar, except for some vertical shifts. 

Since KGE_wi values did not differ much for different fractionation 
scenarios (within 0.09) (Fig. 6 and Table 1), considering (or not) 
evaporation fractionation does not significantly impact the isotopic 
composition in discharge water in this example (humid conditions). The 
Non_Frac scenario had a slightly higher KGE_wi, indicating that it can fit 
isotopic data better, followed by CG_Frac, while Gon_Frac performed the 
worst. This is understandable since evaporation fractionation could be 
neglected in this example, as seen from the dual-isotope plots (Fig. 5 of 
Stumpp et al., 2012). 

For the Braud et al. (2009a) dataset, as indicated in Section 3.2.1, the 
hydraulic conductivities in the fractionation (CG_Frac, Gon_Frac, 
Meas_Frac) scenarios were a little higher than those in the Non_Frac 
scenario. This is because fractionation decreases the isotope flux by 
evaporation compared with a no fractionation scenario. A higher hy
draulic conductivity in the fractionation scenarios promotes upward 
evaporation and fractionation. This increases the isotopic composition 
of remaining soil water and thus produces a better fit between simulated 
and observed isotope profiles. 

When evaporation fractionation was not considered, the isotopic 
composition of evaporation remained the same as the initial isotopic 
composition. This resulted in a uniform isotopic composition (equal to 
the initial value) distribution of soil water throughout the profile in the 
Non_Frac scenario (Fig. 9). In fractionation scenarios, the peak value of 
the isotopic composition profile was inversely proportional to the dis
persivity value (Fig. 9 and Table 3), which is consistent with the con
clusions from Braud et al. (2009b). 

The isotopic composition profiles and the KGE_wi values differed 
dramatically (reached 1.48) between different fractionation scenarios 
(Fig. 9 and Table 3). This implies that considering evaporation frac
tionation significantly impacts the isotopic composition profile in this 
example (arid conditions). The Meas_Frac scenario had the highest 
KGE_wi (i.e., for the water isotopic composition), followed by the 
Gon_Frac, and then CG_Frac, while the Non_Frac scenario performed the 
worst. This is understandable since evaporation fractionation could not 
be neglected, and the measured evaporation isotope flux is the most 
accurate for this example (Braud et al. 2009b). 

4.2. Impacts of evaporation fractionation on practical applications 

4.2.1. Estimation of drainage and RWU travel times 
Differences in water travel times were not evident among different 

fractionation scenarios (Table 4), since the numerator in Eq. (2) is much 
larger than the denominator in the peak displacement method. As a 
result, water travel times were similar for different fractionation 

Fig. 7. The residence time distributions (RTDs) for different fractionation scenarios (Non_Frac – top, CG_Frac – middle, and Gon_Frac – bottom). Note that the dashed 
red line represents the rooting depth. 
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scenarios despite a very different dispersivity. However, for the particle 
tracking method based on water flow calculations, differences in water 
travel times were evident among different fractionation scenarios 
(Table 2), despite their similar KGE values (Table 1). In addition, dif
ferences in estimated soil hydraulic parameters may also cause dis
crepancies in TTs of individual precipitation events and the temporal 
origin of water for RWU (Figs. S8 and 7 ~ 8). 

Overall, the particle tracking method gave much higher travel times 
than the peak displacement method (Table 2). Different results by these 
two methods may be associated with different rainfall events selected for 
these calculations. The peak-displacement method calculates the travel 
times during frequent and heavy precipitation events (precipitation 
events from 2005 ~ 2006), while particle tracking assesses the travel 
times over longer periods (Zhou et al., 2021). 

Notably, water travel times in the Non_Frac scenario obtained by the 
particle tracking method are most consistent with the approximate es
timate of 41 weeks provided by previous studies with similar crops and 
areas (Stumpp et al., 2009). It is worth mentioning that Asadollahi et al. 
(2020) pointed out that the SAS approach was a good alternative for 
estimating water travel times when the system was too complicated to 
be fully described by the HYDRUS-1D model. Our study demonstrates 
that the water-flow-based particle tracking module in HYDRUS-1D is 
another promising way of constraining estimation errors in water travel 
times, especially when there is not enough isotope data to calibrate the 
lumped or physically based isotope transport models. 

In contrast, considering fractionation using either the CG or Gon
fiantini models will likely lead to larger water travel time estimates than 
in the Non_Frac scenario (Table 2). This is because fractionation 

Fig. 8. The temporal origin of root water uptake (RWU) for different fractionation scenarios (Non_Frac – top, CG_Frac – middle, and Gon_Frac – bottom). The upper 
panels show the monthly transpiration sums (in different colors); the lower panels show fractional contributions of water of a certain age/origin (by month) to the 
monthly transpiration sums. 

Table 3 
Optimized parameters and Kling-Gupta efficiency (KGE) indices (wc, wi, and avg refer to the water content, water isotopic composition, and average, respectively) for 
different fractionation scenarios (Non_Frac, CG_Frac, Gon_Frac, and Meas_Frac) (for the Braud et al. (2009a) dataset).  

Fractionation scenario θrcm3/ cm3 θscm3/ cm3 α(cm− 1) n(-) Ks(cm/d) λ(cm) KGE_wc KGE_wi KGE_avg 

Non_Frac 0  0.435  0.0103  2.352  0.158  0.166  0.96  − 0.55  0.20 
CG_Frac 0  0.458  0.0106  2.367  0.139  0.126  0.85  0.37  0.61 
Gon_Frac 0  0.441  0.0101  2.352  0.142  0.114  0.96  0.47  0.71 
Meas_Frac 0  0.452  0.0082  2.392  0.156  0.932  0.90  0.94  0.92  

T. Zhou et al.                                                                                                                                                                                                                                    



Journal of Hydrology 612 (2022) 128100

11

scenarios result in a larger dispersivity (to increase the dispersion of 
isotopes) or lower hydraulic conductivities (to decrease convection of 
isotopes), as discussed in Section 4.1. 

4.2.2. Estimation of the evaporation flux 
For evaporation estimation, the isotope-transport-based methods for 

different fractionation (CG_Frac, Gon_Frac, and Meas_Frac) scenarios 
can give comparable results to the water-flow-based methods, including 
laboratory measurements and the HYDRUS-1D water balance. In 
contrast, the Non_Frac scenario can produce similar results only when 
using the water-flow-based method (HYDRUS-1D water balance). 
However, since the measured evaporation flux was used as the upper 
boundary condition in this (arid conditions) example, it is not clear 
whether the similarity between estimated evaporation amounts using 
the HYDRUS-1D water balance method in the Non_Frac and fraction
ation (CG_Frac, Gon_Frac, Meas_Frac) scenarios was due to this bound
ary condition, or because actual soil hydraulic conductivities and water 
contents were continuously adjusted to actual soil fluxes without ever 
reaching full saturation. However, it is clear that evaporation fraction
ation has a significant impact on the isotope transport and isotopic 
compositions in arid conditions, as shown in Fig. 9. Therefore, the direct 
use of simulated isotopic compositions in the Non_Frac scenario may 
result in large biases in practical applications in arid conditions, as seen 
from the evaporation estimation results in Table 4. 

4.3. Comparison of different climate conditions and implications for 
future studies 

The soil saturated hydraulic conductivities (Ks), and the retention 
curve shape parameter (α) were the parameters most affected by the 
consideration of evaporation fractionation for the humid condition 
dataset (Table 1). For the arid condition dataset, these were the dis
persivity (λ) and the retention curve shape parameter (α) (Table 3). This 
is likely associated with the effects of soil texture on retention curves and 
soil moisture conditions in different climate zones (Radcliffe and 
Šimůnek, 2018). Overall, soil water retention and hydraulic conductiv
ity curves (Fig. S12) in different fractionation scenarios were more 
similar for the Braud et al. (2009a) dataset than the Stumpp et al. (2012) 
dataset (Fig. S8). One reason is that the measured evaporation flux was 
used as the upper BC in the former, which constrains the model flexi
bility. Another reason is that there was only one soil layer in the Braud 
et al. (2009a) dataset, while there were three soil layers in the Stumpp 
et al. (2012) dataset. There is likely a compensation effect between the 
parameters of different layers, and thus the parameter values can vary 
more in the Stumpp et al. (2012) dataset. 

While evaporation fractionation plays an essential role in parameter 
estimation in both cases, its impact on model performance is relatively 
small in the example for humid conditions but more significant in the 
example for arid conditions, as discussed in Sections 4.1 and 4.2. This is 
expected since evaporation plays a more important role in the water 
balance of the arid dataset (Table 4) than in the humid dataset 
(Fig. S13). These conclusions also indirectly validate the common 
assumption that evaporation fractionation may be neglected in some 
humid regions but not in arid areas (Sprenger et al., 2016a). 

However, parameter sensitivities and optimization results reflect 
complex combined effects of climate, soil, and vegetation characteris
tics. The isotopic composition of soil water is not only affected by 
evaporation fractionation, but also by the mixing of rainfall with soil 
water and different flow paths in the soil, leading to its variations with 
depths and time. The insufficient knowledge of the spatiotemporal 
isotope distribution (e.g., in shallow and deep depths or during different 
stages of evaporation) and the lack of such information in the objective 
function may bias the parameter estimation results. For example, not 
including isotopes from different soil depths within the soil profile might 
lead to an underestimation of evaporation fractionation in general, 
biased estimation of water mixing within the profile, and a similar iso
topic signal in the discharge. In this study, we considered either the time 
series of the isotopic composition of the bottom flux in the Stumpp et al. 
(2012) dataset or the final isotopic composition profile in the Braud 
et al. (2009a) dataset. In addition, observation data types and spatio
temporal distributions are different for these two datasets, and this 

Fig. 9. Measured (symbols) and simulated (lines) δ18O isotopic compositions 
across the soil profile for different fractionation (Non_Frac, CG_Frac, Gon_Frac, 
and Meas_Frac) scenarios (for the Braud et al. (2009a) dataset). 

Table 4 
Cumulative evaporation measured using different experimental methods and 
calculated considering different fractionation scenarios.  

Method Fractionation 
scenario 

Cumulative 
evaporation 
(mm) 

Initial soil 
water 
storage 
(mm) 

FE(-) 

Direct 
measurement 
(of airflow and 
humidity)  

105 153  68.7% 

Column 
weighting  

103 153  67.1% 

Trapped volume  103 153  67.3% 
HYDRUS-1D 

water mass 
balance 

Non_Frac 105 151  69.5% 
CG_Frac 105 159  66.0% 
Gon_Frac 105 153  68.6% 
Meas_Frac 105 157  66.9% 

Isotope mass 
balance 

Non_Frac – 151  – 
CG_Frac 102 159  64.4% 
Gon_Frac 97 153  63.1% 
Meas_Frac 103 157  65.6% 

Note that values of cumulative evaporation for the first three laboratory mea
surement methods are from Braud et al. (2009a). 

T. Zhou et al.                                                                                                                                                                                                                                    



Journal of Hydrology 612 (2022) 128100

12

difference may affect the comparison of parameter estimation results 
between different climate conditions. 

The GSA was carried out for the Non_Frac scenario for the Stumpp 
et al. (2012) dataset and the Meas_Frac scenario for the Braud et al. 
(2009a) dataset because they were closest to the experimental condi
tions. This implicitly assumes that sensitivity remains the same for 
different model structures. However, different model structures may 
affect GSA and PSO results, which should be further explored. Last but 
not least, the impacts of possible transpiration fractionation, as observed 
in multiple studies, should also be included in future analyses (e.g., 
Barbeta et al., 2019). Therefore, it is difficult to generalize the results of 
this study or apply them to other specific conditions. 

5. Summary and conclusions 

In this study, we analyzed parameter estimation results for two 
datasets collected under humid and arid climate conditions using the 
isotope transport model, in which we either did or did not consider 
evaporation fractionation. The global sensitivity analysis using the 
Morris and Sobol’ methods and the parameter estimation using the 
Particle Swarm Optimization algorithm highlight the significant impacts 
of considering evaporation fractionation on parameter estimation and 
model performance. The KGE index for isotope data can increase by 0.09 
and 1.49 for the humid and arid datasets, respectively, when selecting 
suitable fractionation scenarios. 

The impact of different parameter values estimated when consid
ering (or not) evaporation fractionation propagates into practical ap
plications of isotope transport modeling. The isotope-transport-based 
method (peak displacement) gave much lower water travel times than 
the water-flow-based method (particle tracking) for humid conditions. 
Considering fractionation using the CG and Gonfiantini models will 
likely lead to larger water travel time estimates and ages for RWU. For 
arid conditions example, the isotope-transport-based method (isotope 
mass balance) can provide comparable evaporation estimates for 
different fractionation (CG_Frac, Gon_Frac, Meas_Frac) scenarios as the 
water-flow-based methods (HYDRUS-1D water balance and laboratory 
measurements). In contrast, the Non_Frac scenario can produce 
reasonable evaporation estimation only when using the water-flow- 
based method. 

The direct use of simulated isotopic compositions in the no frac
tionation scenario may result in large biases in practical applications in 
arid regions where evaporation fractionation is more extensive than in 
humid areas. Integrated use of water-flow and isotope-transport-based 
methods may provide mutual validation and be an important way to 
avoid this problem. This research may shed some light on future labo
ratory and field experimental designs regarding the practical applica
tions of the isotope-transport modeling in different climate zones. 
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