3 research outputs found

    Absolute choline tissue concentration mapping for prostate cancer localization and characterization using 3D 1 H MRSI without water-signal suppression.

    Get PDF
    PURPOSE: Until now, 1 H MRSI of the prostate has been performed with suppression of the large water signal to avoid distortions of metabolite signals. However, this signal can be used for absolute quantification and spectral corrections. We investigated the feasibility of water-unsuppressed MRSI in patients with prostate cancer for water signal-mediated spectral quality improvement and determination of absolute tissue levels of choline. METHODS: Eight prostate cancer patients scheduled for radical prostatectomy underwent multi-parametric MRI at 3 T, including 3D water-unsuppressed semi-LASER MRSI. A postprocessing algorithm was developed to remove the water signal and its artifacts and use the extracted water signal as intravoxel reference for phase and frequency correction of metabolite signals and for absolute metabolite quantification. RESULTS: Water-unsuppressed MRSI with dedicated postprocessing produced water signal and artifact-free MR spectra throughout the prostate. In all patients, the absolute choline tissue concentration was significantly higher in tumorous than in benign tissue areas (mean ± SD: 7.2 ± 1.4 vs 3.8 ± 0.7 mM), facilitating tumor localization by choline mapping. Tumor tissue levels of choline correlated better with the commonly used (choline + spermine + creatine)/citrate ratio (r = 0.78 ± 0.1) than that of citrate (r = 0.21 ± 0.06). The highest maximum choline concentrations occurred in high-risk cancer foci. CONCLUSION: This report presents the first successful water-unsuppressed MRSI of the whole prostate. The water signal enabled amelioration of spectral quality and absolute metabolite quantification. In this way, choline tissue levels were identified as tumor biomarker. Choline mapping may serve as a tool in prostate cancer localization and risk scoring in multi-parametric MRI for diagnosis and biopsy procedures

    Simultaneous 18F-fluciclovine Positron Emission Tomography and Magnetic Resonance Spectroscopic Imaging of Prostate Cancer

    Get PDF
    Purpose: To investigate the associations of metabolite levels derived from magnetic resonance spectroscopic imaging (MRSI) and 18F-fluciclovine positron emission tomography (PET) with prostate tissue characteristics. Methods: In a cohort of 19 high-risk prostate cancer patients that underwent simultaneous PET/MRI, we evaluated the diagnostic performance of MRSI and PET for discrimination of aggressive cancer lesions from healthy tissue and benign lesions. Data analysis comprised calculations of correlations of mean standardized uptake values (SUVmean), maximum SUV (SUVmax), and the MRSI-derived ratio of (total choline + spermine + creatine) to citrate (CSC/C). Whole-mount histopathology was used as gold standard. Results: The results showed a moderate significant correlation between both SUVmean and SUVmax with CSC/C ratio. Conclusions: We demonstrated that the simultaneous acquisition of 18F-fluciclovine PET and MRSI with an integrated PET/MRI system is feasible and a combination of these imaging modalities has potential to improve the diagnostic sensitivity and specificity of prostate cancer lesions
    corecore