99 research outputs found

    An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery

    Get PDF
    Alleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on CNS and motor neurons). However, screening using DRG neurons is currently a low-throughput process and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here we show evidence that a veratridine-based calcium assay allows an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (non-targeted neurons). We confirmed the link between the oscillatory profile and nociceptors; and the slow-decay profile and non-nociceptors using three transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors

    A knowledge-Induced Operator Model

    Get PDF
    Learning systems are in the forefront of analytical investigation in the sciences. In the social sciences they occupy the study of complexity and strongly interactive world-systems. Sometimes they are diversely referred to as symbiotics and semiotics when studied in conjunction with logical expressions. In the mathematical sciences the methodology underlying learning systems with complex behavior is based on formal logic or systems analysis. In this paper relationally learning systems are shown to transcend the space-time domain of scientific investigation into the knowledge dimension. Such a knowledge domain is explained by pervasive interaction leading to integration and followed by continuous evolution as complementary processes existing between entities and systemic domains in world-systems, thus the abbreviation IIE-processes. This paper establishes a mathematical characterization of the properties of knowledge-induced process-based world-systems in the light of the epistemology of unity of knowledge signified in this paper by extensive complementarities caused by the epistemic and ontological foundation of the text of unity of knowledge, the prime example of which is the realm of the divine laws. The result is formalism in mathematical generalization of the learning phenomenon by means of an operator. This operator summarizes the properties of interaction, integration and evolution (IIE) in the continuum domain of knowledge formation signified by universal complementarities across entities, systems and sub-systems in unifying world-systems. The opposite case of ‘de-knowledge’ and its operator is also briefly formalized

    Evidence of apomixis in cassava (Manihot esculenta Crantz)

    Get PDF
    Apomixis maintains heterosis and avoids transmission of systemic pathogens which accompany vegetative propagation of cassava. An embryonic study of cleared ovules of two cassava clones in toto showed them to be of aposporic nature. Cytogenetic analysis of the two clones revealed an aneuploid structure (2n + 1) in apomictic individuals, whereas it was 2n in the sexually reproduced plants.A Apomixia mantém a heterose e evita a transmissão de patógenos sistêmicos que acompanham a propagação vegetativa da mandioca. Um estudo embriônico de ovos clareados de dois clones de mandioca in toto mostrou que eles são de natureza apospórica. A análise citogenética dos 2 clones revelou uma estrutura aneuploide (2n + 1) em indivíduos apomíticos, ao passo que era 2n em plantas reproduzidas sexualmente

    Mice Lacking Kcns1 in Peripheral Neurons Show Increased Basal and Neuropathic Pain Sensitivity

    Get PDF
    Voltage-gated potassium (Kv) channels are increasingly recognised as key regulators of nociceptive excitability. Kcns1 is one of the first potassium channels to be associated with neuronal hyperexcitability and mechanical sensitivity in the rat, as well as pain intensity and risk of developing chronic pain in humans. Here, we show that in mice Kcns1 is predominantly expressed in the cell body and axons of myelinated sensory neurons positive for neurofilament-200, including Aδ-fiber nociceptors and low-threshold Aβ mechanoreceptors. In the spinal cord, Kcns1 was detected in laminae III-V of the dorsal horn where the majority of sensory A-fibers terminate, as well as large motoneurons of the ventral horn. In order to investigate Kcns1 function specifically in the periphery, we generated transgenic mice in which the gene is deleted in all sensory neurons, but retained in the central nervous system (CNS). Kcns1 ablation resulted in a modest increase in basal mechanical pain, with no change in thermal pain processing. Following neuropathic injury, Kcns1 KO mice exhibited exaggerated mechanical pain responses and hypersensitivity to both noxious and innocuous cold, consistent with increased A-fiber activity. Interestingly, Kcns1 deletion also improved locomotor performance in the rotarod test, indicative of augmented proprioceptive signalling. Our results suggest that restoring Kcns1 function in the periphery may be of some use in ameliorating mechanical and cold pain in chronic states

    Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression

    Get PDF
    Key points α‐ and β‐cells express both Nav1.3 and Nav1.7 Na+ channels but in different relative amounts. The differential expression explains the different properties of Na+ currents in α‐ and β‐cells. Nav1.3 is the functionally important Na+ channel α subunit in both α‐ and β‐cells. Islet Nav1.7 channels are locked in an inactive state due to an islet cell‐specific factor. Mouse pancreatic β‐ and α‐cells are equipped with voltage‐gated Na+ currents that inactivate over widely different membrane potentials (half‐maximal inactivation (V0.5) at −100 mV and −50 mV in β‐ and α‐cells, respectively). Single‐cell PCR analyses show that both α‐ and β‐cells have Nav1.3 (Scn3) and Nav1.7 (Scn9a) α subunits, but their relative proportions differ: β‐cells principally express Nav1.7 and α‐cells Nav1.3. In α‐cells, genetically ablating Scn3a reduces the Na+ current by 80%. In β‐cells, knockout of Scn9a lowers the Na+ current by >85%, unveiling a small Scn3a‐dependent component. Glucagon and insulin secretion are inhibited in Scn3a−/− islets but unaffected in Scn9a‐deficient islets. Thus, Nav1.3 is the functionally important Na+ channel α subunit in both α‐ and β‐cells because Nav1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Nav1.7 sequence in brain and islets is identical and yet the V0.5 for inactivation is >30 mV more negative in β‐cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation

    NaV1.7 and pain: contribution of peripheral nerves

    Get PDF
    The sodium channel NaV1.7 contributes to action potential generation and propagation. Loss-of-function mutations in patients lead to congenital indifference to pain, though it remains unclear where on the way from sensory terminals to CNS the signalling is disrupted. We confirm that conditional deletion of NaV1.7 in advillin expressing sensory neurons leads to impaired heat and mechanical nociception in behavioural tests. With single-fiber recordings from isolated skin we found (1) a significantly lower prevalence of heat responsiveness to in normally mechanosensitive C-fibers, although (2) the rare heat responses appeared quite vigorous and (3) heat-induced CGRP release was normal. In biophysical respects, while electrical excitability, rheobase and chronaxy were normal (4) axonal conduction velocity was 20% slower than in congenic wildtype mice (5) and when challenged with double pulses (< 100 ms interval), the second action potential showed more pronounced latency increase (6). Upon prolonged electrical stimulation at 2 Hz, (7) activity-dependent slowing of nerve fiber conduction was markedly less and (8) was less likely to result in conduction failure of the mutant single-fibers. Finally, recording of compound action potentials from the whole saphenous nerve confirmed slower conduction and less activity-dependent slowing as well as the functional absence of a large subpopulation of C-fibers (9) in conditional Nav1.7 knock-outs. In conclusion, the clear deficits in somatic primary afferent functions shown in our study may be complemented by previously reported synaptic dysfunction and opioidergic inhibition, together accounting for the complete insensitivity to pain in the human mutants lacking Nav1.7

    Prevalence of Esophageal Atresia among 18 International Birth Defects Surveillance Programs

    Get PDF
    BACKGROUND: The prevalence of esophageal atresia (EA) has been shown to vary across different geographical settings. Investigation of geographical differences may provide an insight into the underlying etiology of EA. METHODS: The study population comprised infants diagnosed with EA during 1998 to 2007 from 18 of the 46 birth defects surveillance programs, members of the International Clearinghouse for Birth Defects Surveillance and Research. Total prevalence per 10,000 births for EA was defined as the total number of cases in live births, stillbirths, and elective termination of pregnancy for fetal anomaly (ETOPFA) divided by the total number of all births in the population. RESULTS: Among the participating programs, a total of 2943 cases of EA were diagnosed with an average prevalence of 2.44 (95% confidence interval [CI], 2.352.53) per 10,000 births, ranging between 1.77 and 3.68 per 10,000 births. Of all infants diagnosed with EA, 2761 (93.8%) were live births, 82 (2.8%) stillbirths, 89 (3.0%) ETOPFA, and 11 (0.4%) had unknown outcomes. The majority of cases (2020, 68.6%), had a reported EA with fistula, 749 (25.5%) were without fistula, and 174 (5.9%) were registered with an unspecified code. CONCLUSIONS: On average, EA affected 1 in 4099 births (95% CI, 1 in 39544251 births) with prevalence varying across different geographical settings, but relatively consistent over time and comparable between surveillance programs. Findings suggest that differences in the prevalence observed among programs are likely to be attributable to variability in population ethnic compositions or issues in reporting or registration procedures of EA, rather than a real risk occurrence difference. Birth Defects Research (Part A), 2012. (c) 2012 Wiley Periodicals, Inc
    corecore