9 research outputs found

    Analyse numérique et expérimentale de la mise en forme par estampage des renforts composites pour applications aéronautiques

    Get PDF
    Ces travaux de thèse s’inscrivent dans un thème de recherche portant sur l’optimisation de la phase de conception et la préparation de la fabrication par estampage de pièces de formes complexes. Le préformage des renforts tissés secs est un enjeu important pour plusieurs procédés de production de pièces en matériaux composites tel que, par exemple, le procédé RTM (Resin Transfer Molding). Au cours de cette phase, la préforme est soumise à des déformations importantes. La connaissance du comportement du tissu sec est alors un enjeu majeur en vue de l’optimisation des procédés de mise en forme. Pour mettre en œuvre les renforts tissés, il est nécessaire de tenir compte de leurs caractéristiques intrinsèques aux différentes échelles, de leurs très grandes déformations en cisaillement et du comportement fortement orienté de ces matériaux. Un point important réside dans la détermination des orientations des renforts après formage. Face à la complexité de mise au point expérimentale de la mise en forme des renforts tissés, la simulation est un outil important pour l’optimisation de conception de pièces composites. Dans ce travail, une nouvelle approche hybride discrète non linéaire, basée sur l’association d’éléments continus hypoélastiques (comportement en cisaillement non linéaire) avec des connecteurs spécifiques de comportement non linéaire a été abordée. Elle permet de prédire les contraintes au niveau des fibres et de déterminer avec plus de précision, les angles de cisaillement en se basant sur la modification de l’orientation en grande déformation. En outre, elle permet d’analyser et de prévoir le comportement global du tissu à partir de sa structure interne. Le nombre de paramètres à identifier est faible et le temps de calcul est raisonnable. Cette approche a été programmée via une routine VUMAT et implémentée dans le code de calcul élément fini ABAQUS/Explicit. L’identification et la validation du modèle ont été effectuées en utilisant des essais de caractérisation standard des tissus. Les résultats de mise en forme des renforts tissés ont été comparés à des résultats expérimentaux

    (Cryptand-222)potassium(+) (hydrogensulfido)[5,10,15,20-tetra­kis(2-pival­amido­phen­yl)porphyrinato]ferrate(II)

    Get PDF
    As part of a systematic investigation for a number of FeII porphyrin complexes used as biomimetic models for cytochrome P450, crystals of the title compound, [K(C18H36N2O6)][FeII(C64H64N8O4)(HS)], were prepared. The compound exhibits a non-planar conformation with major ruffling and saddling distortions. The average equatorial iron–pyrrole N atom [Fe—Np = 2.102 (2) Å] bond length and the distance between the FeII atom and the 24-atom core of the porphyrin ring (Fe—PC= 0.558 Å) are typical for high-spin iron(II) penta­coordinate porphyrinates. One of the tert-butyl groups in the structure is disordered over two sets with occupancies of 0.84 and 0.16

    Chlorido{5,10,15,20-tetra­kis­[2-(2,2-dimethyl­propanamido)­phen­yl]porphyrinato-κ4 N,N′,N′′,N′′′}iron(III) chloro­benzene hemisolvate monohydrate

    Get PDF
    In the title complex, [Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O, the equatorial iron–pyrrole N atom distance (Fe—Np) is 2.065 (2) Å and the axial Fe—Cl distance is 2.207 (2) Å. The iron cation is displaced by 0.420 (4) Å from the 24-atom mean plane of the porphyrin core. The asymmetric unit contains a quarter of an [FeIII(C64H64N8O4)Cl] complex mol­ecule, with a fourfold rotation axis passing through the central metal cation and the Cl ligand, along with disordered mol­ecules of chloro­benzene and water of solvation; the solvent mol­ecules were excluded from the refinement

    Numerical models of fabric behaviour using hybrids discrete elastic and hypoelastic modelling

    Get PDF
    This paper present two hybrids discrete continuous models for the simulation of woven fabric reinforcement preforming via explicit finite element analysis. There approaches are based 1D elements on a beam or nonlinear connectors, and 2D element account for shearing resistance of the fabric. The first developed model is built using linear and nonlinear connectors to take into account the tensile stiffness of the fabric, and a shell elastic isotropic element. The second model is based on nonlinear elements and the hypo-elastic behaviour. The determination of the material parameters is straightforward from tensile and bias extension tests. These proposed approaches have been implemented in the ABAQUS explicit finite element programs via subroutine VUMAT. There models allows the simulation of industrial part forming in a reasonable computational time. Simulations of the hemispherical shape of woven fabric 48600 C1300 have been implemented to highlight the performance of these model

    Experimental study of 48600 Carbons fabrics behavior using marks tracking technique method

    Get PDF
    Lightweight and energy saving are the main challenges in the aircraft industry production, that explain the increase of composite demand and the diversity of its applications. The investigation of the shear behavior and stiffness of technical woven fabric are essential to guarantee the performance of the final product. In case of forming process (for example RTM process), the in-plane deformability of the woven fabric is necessary for forming without creating defects. The change of the fiber orientation (warp and weft) have a significant impact on final mechanical properties. In this study, the use of marks tracking technique allow the determination of the rigidity of 48600 C 1300 carbon fabrics, and allow calculation of their shear angle, lock angle during tensile and bias-extension tests

    Sensitivity analysis of composite forming process parameters using numerical hybrid discrete approach

    Get PDF
    The aim of this study is to investigate the influence of some important parameters in composite forming using a hybrid discrete hypoelastic computational model developed for simulation of the deformation behaviour of fibres materials. This model is based on elementary cell of shell or membrane type reinforced by nonlinear connectors. Moreover, it can follow the rotation of the fiber during the forming process. The constitutive model has been implemented in a commercial FE code (Abaqus Explicit) via a user material subroutine VUMAT. It has been shown that the forming simulation is affected by the process parameters like the binder force, the coefficient of friction and forming speed on the shear angle distribution

    Hybrid approach for woven fabric modelling based on discrete hypoelastic behaviour and experimental validation

    Get PDF
    A non-linear discrete hybrid approach based on the association of hypoelastic continuous elements (non-linear shear behaviour) with specific connectors (non-linear tension stiffness) is developed. It allows the simulation of a two-dimensional (2D) woven reinforcement forming via an accurate explicit finite element analysis. This approach allows the simulation of 2D unbalanced fabrics uncoupling tensile and shear behaviour. It only needs a few parameters to be identified, and shows a good agreement with the experiments. The identification of the model parameters is investigated, and their relevance is analysed in reference tests. To determine the continuous element behaviour, a VUMAT hypoelastic model is implemented in Abaqus/Explicit. This model allows the prediction of fibre stresses and the accurate determination of shear angle in large deformations. Identification and validation of the model are performed using standard characterisation fabric tests. The experimental characterisation provided the numerical data to produce a representational prediction of the deformed fabric geometry and shear angle distribution. Further, the behaviour of the carbon woven reinforcement is identified. A bias extension test is used to both calibrate and validate the model. The capability of the model is illustrated to simulate deep drawing, and to compare with the experimental results of hemispherical forming

    Analyse numérique et expérimentale de la mise en forme par estampage des renforts composites pour applications aéronautiques

    No full text
    Ces travaux de thèse s’inscrivent dans un thème de recherche portant sur l’optimisation de la phase de conception et la préparation de la fabrication par estampage de pièces de formes complexes. Le préformage des renforts tissés secs est un enjeu important pour plusieurs procédés de production de pièces en matériaux composites tel que, par exemple, le procédé RTM (Resin Transfer Molding). Au cours de cette phase, la préforme est soumise à des déformations importantes. La connaissance du comportement du tissu sec est alors un enjeu majeur en vue de l’optimisation des procédés de mise en forme. Pour mettre en œuvre les renforts tissés, il est nécessaire de tenir compte de leurs caractéristiques intrinsèques aux différentes échelles, de leurs très grandes déformations en cisaillement et du comportement fortement orienté de ces matériaux. Un point important réside dans la détermination des orientations des renforts après formage. Face à la complexité de mise au point expérimentale de la mise en forme des renforts tissés, la simulation est un outil important pour l’optimisation de conception de pièces composites. Dans ce travail, une nouvelle approche hybride discrète non linéaire, basée sur l’association d’éléments continus hypoélastiques (comportement en cisaillement non linéaire) avec des connecteurs spécifiques de comportement non linéaire a été abordée. Elle permet de prédire les contraintes au niveau des fibres et de déterminer avec plus de précision, les angles de cisaillement en se basant sur la modification de l’orientation en grande déformation. En outre, elle permet d’analyser et de prévoir le comportement global du tissu à partir de sa structure interne. Le nombre de paramètres à identifier est faible et le temps de calcul est raisonnable. Cette approche a été programmée via une routine VUMAT et implémentée dans le code de calcul élément fini ABAQUS/Explicit. L’identification et la validation du modèle ont été effectuées en utilisant des essais de caractérisation standard des tissus. Les résultats de mise en forme des renforts tissés ont été comparés à des résultats expérimentaux.This thesis is part of a research theme dealing with the optimization of the design process and thepreparation for a manufacturing process by stamping of complex shaped parts. The preforming ofdry woven reinforcements is one of the most important steps during production of complexcomposite material parts such as RTM (Resin Transfer Molding) process. In this stage, thedeformation of preform (fabric) is quite important. Understand the woven behavior is an essentialstep in the study of shaping processes. In order to use woven reinforcements to produce industrialparts, it is compulsory to take into account their intrinsic characteristics at different scales, theirvery large shear deformations and the high oriented behavior of these materials. Further more, thedetermination of the reinforcement orientations after forming is an important task. The complexityof the experimental development of the shaping of woven reinforcements makes simulation animportant tool for optimizing the design of composite parts. This work presented a new non-lineardiscrete hybrid approach, based on the association of hypoelastic continuous elements (non-linearshear behavior) with specific non-linear behavior connectors. This approach able to predict thestresses at the level of the fiber to determine with more precision, the shear angles based on themodification of the orientation in large de formation. In addition, it allows the overall behavior of thetissue to be analyzed and predicted from its internal structure. The number of parameters to be identified is limited and the calculation time is reasonable. This approach was implemented in the Finite element code ABAQUS/Explicit via a VUMAT routine code. The identification and validationof the model was performed using standard fabric characterization tests. The woven reinforcement forming results were compared with experimental results

    A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials

    No full text
    Breakthroughs in materials science are the driving force behind many of today's industrial advancements in our fast-changing high-tech world. Composite materials have proven valuable in numerous sectors, including automotive, aerospace, aeronautics, naval, and sports, due to their exceptional mechanical properties and lightweight nature. However, environmental concerns have led to a decrease in the use of fossil fuel-derived materials. Additionally, efforts to reduce greenhouse gas emissions and improve fuel efficiency require lightweight materials with a lower carbon footprint, highlighting the importance of natural fiber composites. Natural fiber composites are made from renewable resources, comprising reinforcements made of natural fibers such as jute, flax, ramie, hemp, cotton, sisal, and kenaf, and a matrix, preferably derived from biomass, which may or may not be biodegradable. However, plant fibers have certain drawbacks when combined with polymers. Due to the presence of hydroxyl groups in lignocellulose, plant fibers are hydrophilic, making them incompatible with hydrophobic thermoplastics and prone to moisture damage. These limitations pose challenges for using plant fibers as polymer reinforcement. To improve adhesion between fibers and the polymer matrix and reduce moisture absorption, surface modifications are typically required. Various methods, such as alkaline, silane, or other chemical treatments, have been developed to enhance fiber-matrix compatibility and improve composite quality. Although natural fiber composites are still in development and their applications are limited, they hold great promise as a sustainable alternative to conventional materials
    corecore