11 research outputs found

    Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations within the tumor suppressor <it>TP53 </it>gene are one of the most common genetic alterations present at high frequency in human tumors and have been shown to be associated with resistance to radio-chemotherapy. The lack of the wild type <it>TP53 </it>gene in cancer cells could be exploited for therapeutic advantage using a sequence of two antagonistic drugs. The aim of this study was to selectively kill p53 deficient cells (FaDu and H1299) by taxol and to protect p53 wild type cells (A549) by the prior administration of nutlin-3 in comparison to certain known anticancer drugs (5-fluorouracil, camptothecin, roscovitine).</p> <p>Methods</p> <p>Cytotoxic and cytostatic properties of 5-fluorouracil, camptothecin, roscovitine and nutlin-3 administrating alone or in combination with taxol were investigated in vitro by flow cytometry.</p> <p>Results</p> <p>It was found that nutlin-3 induced growth arrest and protected A549 cells from taxol. FaDu and H1299 cells responded to the same treatments with mitotic arrest and massive apoptosis. Other compounds (5-fluorouracil, camptothecin and roscovitine) revealed weaker selectivity and elevated toxicity in comparison to nutlin-3.</p> <p>Conclusions</p> <p>We propose a therapeutic strategy protecting normal cells from taxol while increasing apoptosis selectively in p53-deficient cells using nutlin-3.</p

    Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction Final one-year results of the TOPCARE-AMI Trial

    Get PDF
    ObjectivesThe Transplantation of Progenitor Cells And Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) trial investigates both safety, feasibility, and potential effects on parameters of myocardial function of intracoronary infusion of either circulating progenitor cells (CPC) or bone marrow-derived progenitor cells (BMC) in patients with acute myocardial infarction (AMI).BackgroundIn animal experiments, therapy with adult progenitor cells was shown to improve vascularization, left ventricular (LV) remodeling, and contractility after AMI.MethodsA total of 59 patients with AMI were randomly assigned to receive either CPC (n = 30) or BMC (n = 29) into the infarct artery at 4.9 ± 1.5 days after AMI.ResultsIntracoronary progenitor cell application did not incur any measurable ischemic myocardial damage, but one patient experienced distal embolization before cell therapy. During hospital follow-up, one patient in each cell group developed myocardial infarction; one of these patients died of cardiogenic shock. No further cardiovascular events, including ventricular arrhythmias or syncope, occurred during one-year follow-up. By quantitative LV angiography at four months, LV ejection fraction (EF) significantly increased (50 ± 10% to 58 ± 10%; p < 0.001), and end-systolic volumes significantly decreased (54 ± 19 ml to 44 ± 20 ml; p < 0.001), without differences between the two cell groups. Contrast-enhanced magnetic resonance imaging after one year revealed an increased EF (p < 0.001), reduced infarct size (p < 0.001), and absence of reactive hypertrophy, suggesting functional regeneration of the infarcted ventricles.ConclusionsIntracoronary infusion of progenitor cells (either BMC or CPC) is safe and feasible in patients after AMI successfully revascularized by stent implantation. Both the excellent safety profile and the observed favorable effects on LV remodeling, provide the rationale for larger randomized double-blind trials
    corecore