49 research outputs found

    Overcoming Incomplete User Models in Recommendation Systems Via an Ontology

    Get PDF
    To make accurate recommendations, recommendation systems currently require more data about a customer than is usually available. We conjecture that the weaknesses are due to a lack of inductive bias in the learning methods used to build the prediction models. We propose a new method that extends the utility model and assumes that the structure of user preferences follows an ontology of product attributes. Using the data of the MovieLens system, we show experimentally that real user preferences indeed closely follow an ontology based on movie attributes. Furthermore, a recommender based just on a single individual’s preferences and this ontology performs better than collaborative filtering, with the greatest differences when little data about the user is available. This points the way to how proper inductive bias can be used for significantly more powerful recommender systems in the future

    Web Mining for Web Personalization

    Get PDF
    Web personalization is the process of customizing a Web site to the needs of specific users, taking advantage of the knowledge acquired from the analysis of the user\u27s navigational behavior (usage data) in correlation with other information collected in the Web context, namely, structure, content, and user profile data. Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. In this article we present a survey of the use of Web mining for Web personalization. More specifically, we introduce the modules that comprise a Web personalization system, emphasizing the Web usage mining module. A review of the most common methods that are used as well as technical issues that occur is given, along with a brief overview of the most popular tools and applications available from software vendors. Moreover, the most important research initiatives in the Web usage mining and personalization areas are presented

    Webometrics benefitting from web mining? An investigation of methods and applications of two research fields

    Full text link
    Webometrics and web mining are two fields where research is focused on quantitative analyses of the web. This literature review outlines definitions of the fields, and then focuses on their methods and applications. It also discusses the potential of closer contact and collaboration between them. A key difference between the fields is that webometrics has focused on exploratory studies, whereas web mining has been dominated by studies focusing on development of methods and algorithms. Differences in type of data can also be seen, with webometrics more focused on analyses of the structure of the web and web mining more focused on web content and usage, even though both fields have been embracing the possibilities of user generated content. It is concluded that research problems where big data is needed can benefit from collaboration between webometricians, with their tradition of exploratory studies, and web miners, with their tradition of developing methods and algorithms

    Dynamic and Scalable Evolutionary Data Mining: An Approach Based On a Self-Adaptive Multiple Expression Mechanism

    No full text
    Data mining has recently attracted attention as a set of efficient techniques that can discover patterns from huge data. More recent advancements in collecting massive evolving data streams created a crucial need for dynamic data mining. In this paper, we present a genetic algorithm based on a new representation mechanism, that allows several phenotypes to be simultaneously expressed to different degrees in the same chromosome

    Local Nonnegative Matrix Factorization for Mining Typical User Session Profile

    No full text

    Complete this Puzzle: A Connectionist Approach to Accurate Web Recommendations based on a Committee of Predictors

    No full text
    We present a Context Ultra-Sensitive Approach based on two-step Recommender systems (CUSA-2step -Rec). Our approach relies on a committee of profile-specific neural networks. This approach provides recommendations that are accurate and fast to train because only the URLs relevant to a specific profile are used to define the architecture of each network. Similar to the task of completing the missing pieces of a puzzle, each neural network is trained to predict the missing URLs of several complete ground-truth sessions from a given profile, given as input several incomplete subsessions. We compare the proposed approach with collaborative filtering showing that our approach achieves higher coverage and precision while being faster, and requiring lower main memory at recommendation time. While most recommenders are inherently context sensitive, our approach is context ultra-sensitive because a different recommendation model is designed for each profile separately
    corecore