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Abstract. To make accurate recommendations, recommendation systems cur-
rently require more data about a customer than is usually available. We conjec-
ture that the weaknesses are due to a lack of inductive bias in the learning 
methods used to build the prediction models. We propose a new method that 
extends the utility model and assumes that the structure of user preferences fol-
lows an ontology of product attributes. Using the data of the MovieLens sys-
tem, we show experimentally that real user preferences indeed closely follow an 
ontology based on movie attributes. Furthermore, a recommender based just on 
a single individual’s preferences and this ontology performs better than collabo-
rative filtering, with the greatest differences when little data about the user is 
available. This points the way to how proper inductive bias can be used for sig-
nificantly more powerful recommender systems in the future. 

1   Introduction  

Consider a situation where you find yourself with an evening alone and would like to 
rent a DVD to watch. There are hundreds of movies to choose from. For several rea-
sons, this is a difficult problem. First, most people have limited knowledge about the 
alternatives. Second, the set of alternatives changes frequently. Third, this is an ex-
ample of a low user involvement decision process, where the user is not prepared to 
spend hours expressing his preferences. Recommender systems, RS, have been de-
vised as tools to help people in such situations. Two kinds of techniques are widely 
used in e-commerce sites today.  

The first technique is item-to-item collaborative filtering (CF, [11]), which recom-
mends products to users based on other users’ experience. Amazon.com1, with over 29 
million customers and several million catalog items [11], uses this technique which is 
more commonly known to end-user as “Customers who bought this item also bought 
these items:”. CF generates recommendations based on the experience of like-minded 
groups of users, based on the assumption that similar users like similar objects. There-
fore, CF’s ability to recommend items depends on the ability to successfully identify 
                                                           
1 http://www.amazon.com 
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the set of similar users, known as the target user’s neighbourhood. CF does not build 
an explicit model of the users preferences. Instead, preferences remain implicit in the 
ratings that the user gives to some subset of products, either explicitly or by buying 
them. In practice, CF is the most popular recommendation technique and this is due to 
three main reasons. First, studies have shown it to have satisfactory performance 
when sufficient data is available. Second, it can compare items without modeling 
them, as long as they have been previously rated. Finally, the cognitive requirements 
on the user are low. However, as argued by many authors [12][13][18] [19][21], CF 
suffers from profound problems such as:   

− Sparsity. This is CF’s major problem and occurs when the number of items far 
exceeds what an individual can rate.  

− Cold start: When a new user enters the system, he is usually not willing to make 
the effort to rate a sufficient number of items.  

− Latency problem: Product catalogs evolve over time; however, the collaborative 
approach cannot deal with new products as they have not been previously rated.   

− Scalability. The computation of the neighborhood requires looking at all the items 
and users in the systems.  Thus, the complexity grows with the number of users.  

− Privacy. In most systems, the similarity matrix is located on a server and is acces-
sible to a third party, thus raising privacy concerns. 

− Shilling attacks: malicious users can alter user ratings in order to influence the 
recommendations. 

The other widely used technique is preference-based recommendation. Here, a user is 
asked to express explicit preferences for certain attributes of the product. If prefer-
ences are accurately stated, multi-attribute utility theory (MAUT, 10) provides meth-
ods to find the most preferred product even when the set of alternatives is extremely 
large and/or volatile, and thus has no problems of sparsity, cold starts, latency or scal-
ability. Furthermore, since recommendations are based only on an individual user’s 
data, there are no problems with privacy or shilling. However, the big drawback of 
preference-based methods is that the user needs to express a potentially quite complex 
preference model. This may require a large number of interactions, and places a 
higher cognitive load on the user since he has to reason about the attributes that model 
the product.   

However, attribute-based preference models can also be learned from user’s 
choices or ratings, just as in collaborative filtering. In our experiments, this by itself 
can already result in recommendations that are almost as good as those of collabora-
tive filtering. The main novelty of this paper, however, is to use an ontology of prod-
uct attributes to provide an inductive bias that allows learning of this individual 
preference model to succeed even with very few ratings. This leads us to a technique 
for recommender systems that outperform the best known collaborative filtering tech-
niques on the MovieLens data that we have been using for our experiments. Further-
more, very few ratings, just 5 movies, suffice to get recommendations that are almost 
as good as what can be reached with many, 30 or more, ratings. At the same time, the 
user effort required by this technique is not significantly different from collaborative 
filtering system. Thus, we can effectively get the best of both techniques.  
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This paper is organized as follows: Section 2 provides fundamental background in 
Collaborative Filtering, Multi—Attribute Utility Theory, and Ontology Reasoning, 
while our novel approach with its algorithm is explained in Section 3. Section 4 con-
tains experimental results with comparison to existing techniques. Finally, Section 5 
provides the conclusions. 

2   Existing Techniques 

Our approach uses the cognitive simplicity of Collaborative Filtering whilst maintain-
ing the advantages of the Multi-Attribute Utility Theory. This is achieved by employ-
ing the knowledge of an ontology and reasoning over its concepts instead of the 
item’s content itself. Before defining our model, we start by introducing fundamental 
background. 

2.1   Collaborative Filtering 

In pure collaborative filtering systems, users state their preferences by rating a set of 
items, which are then stored in a user-item matrix called S. This matrix contains all 
the users’ profiles, where the rows represents the users U = {u1,…,um}, the columns 
the set of items I = {i1,…,iq}, and Sk,l the normalized rating assigned to item l by the 
user k. Given the matrix S and a target user ui, a user-based CF predicts the rating of 
one or more target items by looking at the rated items of the k nearest neighbors to the 
target user. On the other hand, an item-based CF algorithm looks at the k most similar 
items that have been co-rated by different users. Due to the complexity of the user-
based CF, we will not consider it and focus on item-based CF.  

The first step of item-based collaborative filtering is to compute the similarity be-
tween two co-rated items. Many similarity measures exist, but the most common one 
is the cosine metric, which measures the angle between two vectors of size m. When 2 
items are similar, then the angle between them will be small and consequently give a 
cosine value close to 1; conversely, when items are very different then the value is 
close to 0. Over the years, the cosine metric has been updated in order to take into 
account the variance in the ratings of each user. For example, the adjusted cosine 
similarity subtracts from each user rating Sj,a, the user’s average rating. Once all the 
similarities have been computed, CF estimates the rating of an item a by selecting the 
k most similar items to a, and computes the weighted average of the neighbor’s rating 
based on the similarity the neighbors have with a. 

Unfortunately, as the number of items and/or users grows so will the data sparsity 
in the matrix. This is CF’s fundamental problem and explains why numerous authors 
[12][13][21] have focused their work to try to overcome it. Data-mining [21] or the 
Two-way Aspect Model [19]  are now used to extract the item similarity knowledge 
by using association between the user’s profile [21] and the object’s content [19]  in 
order to augment a standard similarity matrix. To overcome the latency problem, the 
content of the object has also been used to try to predict its rating. This is achieved by 
filling up the similarity matrix [4] or simply by using a weighted combination [12] of 
the content and collaborative prediction. 
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2.2   Multi-attribute Utility Theory 

Formally, each item is defined by a set of n attributes X = {X1,…,Xn}. Each Xi can 
take any value di from a domain Di = {d1,…,dk}. The Cartesian product D = D1x 
D2x… x Dn forms the space of all the possible items I. The user expresses his prefer-
ences by defining the utility function and weight of each attribute. The simplified 
form of the Von Neumann and Morgenstern [23] theorem states that, if item x is con-
sidered better or equivalent to item y, then there exists a utility function u such that 
u(x) is bigger or equal than u(y). In this paper, we do not consider uncertainty, there-
fore the utility function becomes equivalent to a value function, but later we consider 
expected values of similarity. 

Furthermore, if we assume Mutual Preferential Independence (MPI, [10]), then the 
theorem of Additive Value Function[10] can be used , and we can define the utility V 
of an item ok as  the sum of the sub-utility functions vi of item ok on each attribute 
multiplied by its weight wi. This is commonly called the Weighted Additive Strategy 
(WADD, [10]), and the item with then highest overall evaluation value is chosen as 
the optimal solution. 
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Theoretically, when the MPI assumption holds, this strategy can achieve 100% ac-
curacy if all the parameters can be precisely elicited. Unfortunately, the elicitation of 
the parameters is expensive and various authors have tried to simplify this elicitation 
process in order to make it usable in real systems. Stolze et al. [20] for example, ex-
ploit the idea of a scoring tree where a user expresses his preferences by modifying an 
existing tree via the use of rules. Once the preferences have been elicited, the system 
translates the scoring tree into a MAUT additive value function and then searches in 
the catalog for the most suitable products. Incremental Utility Elicitation [7], IUE, is 
another approach that eases the elicitation by an incremental process that interleaves 
utility elicitation and filtering of the items based on the elicited information. A major 
contribution in that domain is the work done by Ha et al [7][8], where polyhedral 
cones and pair wise comparison are used to estimate the user’s true weights. Also, [8] 
makes the assumption that the utility function has a multi-linear form, and that all the 
sub-utility functions are known. Regrettably, computing the cone is a hard problem 
that makes it unsuitable for real life scenarios. More recently, Blythe in [2] has sim-
plified the process by assuming MAUT additive value functions and used a linear 
programming formulation and pair wise comparison of alternatives to estimate the 
user’s true utility. Nevertheless, all of the mentioned approaches work only for a 
small number of attributes. This makes them difficult to apply to real life scenarios 
where alternatives are modeled by many features. 

2.3   Ontology Reasoning 

With the emergence of the Semantic Web, it has been widely accepted that ontologies 
can be used to model the world we live in. In its general form, an ontology is a lattice, 
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where a node represents a concept (i.e.: an object of the world we want to model) 
whilst the edges between concepts correspond to their semantic relations.  

One of the simplest forms of an ontology is the concept tree (CT); A graph where 
the topology is a tree with only is-a relations. The tree structure makes the reasoning 
computationally efficient and the modeling of the domain easy. Despite its simplicity, 
a CT can greatly enhance modeling the domain and the filtering process. In [3], Brad-
ley et al. have successfully used a concept tree to model the job domain and shown 
through experimentation that it is very useful for personalization.  

Concept similarity is the predominant form of ontology reasoning. Most techniques 
use the distance between the concepts in a concept tree or similar graphical ontology 
to estimate their similarities; the smaller the distance between two concepts the more 
similar they are. In [3], for example, distance was simply the number of edges be-
tween the concepts, while Yang and al. in [24] used the depth of the lowest common 
ancestor. In [16], Resnik defined similarity based on the information content shared 
by the concepts rather than its distance. Resnik's metric postulates higher similarity 
among rare concepts. While this makes sense for concepts themselves, there is no 
reason why this would also hold for preferences. 
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Fig. 1. A CT on transports 
 

The metrics in [3][16][24] assume that the 
similarity between two concepts is symmetric, 
i.e.: the similarity between concepts A and B is 
identical to the similarity between concepts B 
and A. However, in real life situations, the 
distance should be considered asymmetric. 
Consider for example the concept tree in Fig. 1. 
If a user liked any kind of vehicle, then he will 
probably like Mercedes cars to a similar de-
gree. On the other hand, liking Mercedes cars 
does not necessarily mean liking any vehicle as 
some people become sick on boats.  

Formally, and assuming that P(X) corresponds to the probability of X occurring 
[16], and P(V ∩ M) is equal to α, then the probability P(V | M) is equal to  
α × (L/(K+2)) while P(M | V) is equal to α ×(L / K). This implies that P(V | M) < 
P(M | V), which means that the similarity function is asymmetric. 

Andreason et al. in [1] defined an asymmetric metric based on the principle of up-
ward reachable nodes. Their metric can be applied to any graph structure, and differ-
entiates between the cost of traveling upward or downward the ontology. Three im-
portant postulates that reflect common sense intuitions are defined in [1]: 

1. Generalization cost property. The cost of generalization should be significantly 
higher than the cost of specialization. 

2. Specificity cost property. The cost of traversing edges should be lower when nodes 
are more specific. 

3. Specialization cost property. Further specialization reduces similarity. 
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The generalization cost property models the asymmetry of the similarity function, 
which implies that the similarity function is not a metric. The specificity cost property 
represents the fact that sub-concepts are more meaningful to the user than super-
concepts, whilst the specialization property reflects the fact that the further away two 
concepts are, then the more dissimilar they become. As a consequence, the specificity 
property reduces the cost of traversing edges as we go deeper in the ontology and the 
specialization property increases the cost between two concepts if other concepts are 
found on the path between these concepts. 

3   Heterogeneous Attribute Preference Propagation Model 

The utility model defined in section 2 is a powerful tool as long as we have a com-
plete user model, and all the items are defined by the same set of attributes. However, 
in volatile environments such as the web, products continuously change, yet the utility 
model can only compare outcomes if they have the same attributes. In this section, we 
introduce the heterogeneous attribute preference propagation model, HAPPL, which 
is capable of building an accurate user model from implicit preferences. HAPPL re-
laxes the previous two conditions and uses two key components to evaluate the user’s 
parameters: 

− Ontologies to model and propagate utility values. 
− Multiple regression to estimate the weights. 

The ontology is the key ingredient of our model and we assume that the one required 
for modeling our attribute is already existing and available. [14][15] were first to 
propose the idea of using a concept hierarchy directly inferred from the website struc-
ture to enhance web usage mining. Major e-commerce sites such as Amazon and 
Yahoo also uses concept tree to model the item they sale, and to the best of our 
knowledge, these ontology were hand crafted. This work does not consider how such 
an ontology was constructed as this is way beyond the scope of this paper. Currently, 
most ontologies are hand crafted by experts as no fully automated tools are yet avail-
able. However, the clustering community has promising result with non-supervised 
incremental hierarchical conceptual algorithm such as COBWEB [6].  

For our experiments, we built a movie recommender system and the ontology 
modeling a movie. The concept tree was built from scratch based on our common 
sense as there is none modeling the movie domain. We did not learn it on the data set, 
but instead we used term definitions found in various dictionaries. To give an idea of 
the resources require to build the ontology, it took the author about one working day 
to conceive it.    

3.1   Basic Idea 

To illustrate the principle that ontology can be used to model and estimate user pref-
erences, take the following problem, where items are defined by a set of 3 attributes 
X1, X2, and X3. For our DVD example, X1 could be the theme, X2 the duration of the 
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movie, and X3 its MPPA rat-
ing. Fig. 2 illustrates a possible 
representation of the domain 
as a concept tree, where each 
level represents an attribute 
and the different concepts at 
depth i the possible domain 
values of the attribute i. Let 
item o be defined by the do-
main values {d1,1; d2,1; d3,1} 
and item p by {d1,1; d2,2; d3,2}. 

Again, Fig. 2 shows clearly that the 2 items have some similarity as they both share 
the node d1,1, which means that they both have this domain value in common.  

We define a simple similarity function (isim) between 2 items o and p as the num-
ber of attributes they share over the total number of possible attributes. This normali-
zation guarantees that the item similarity value lies in the interval [0..1]. 

( , ) | { | ( ) ( )} | | { } |isim o p x x o x p X= =  (2) 

where x(o) is the set of attributes defining item o, and {X} is the set of all attributes. 
Furthermore, this equation assumes that each attribute is equally likely to contribute 
to whether one likes an item, and that each item is defined by the same number of 
attributes. In our example and using equation (2), we can deduce that items p and q 

have a similarity equal to 1/3. Informally, this means that if the user liked item p, then 
there is one chance out of three that he will like outcome q. Notice that the additive 
utility model makes the assumption that if a user has liked features A and B, then 
he/she will like items containing A+B. This assumption is not made in probabilistic 
models, where the features and their combination are considered to be completely 
independent. This introduces an inductive bias that we think is realistic in most real 
life situations; and this is supported by our experimental results. 

In volatile environments, items do not always have the same number of attributes. 
For example, suppose that item o is defined by the values {d1,1; d2,1}, q  by {d1,1; d2,2} 
and p by  {d1,1; d2,2; d3,2}. Following equation (2), the similarity between o and q is 
equal to 1/3, which is also equal to the similarity between o and p. Furthermore, the 
similarity between o and q is equal to the similarity q and o. However, both situations 
are incorrect as the former violates the specialization property, while the latter vio-
lates the generalization cost property.  

According to ontology theory, if two concepts are 
closely related in terms of distance in the graph, then we 
can assume that they are very similar in terms of mean-
ing. Furthermore, the similarity between two concepts is 
equal to one minus the distance between those concepts, 
where the distance is defined as a metric. Consider for 
example the simple generic graph of Fig. 3. The distance 
between nodes a and b can be given as the distance be-
tween node a and its ancestor n plus the distance between 
node n and b. However, due to the generalization prop-
erty, the distance from a to its ancestor should be higher 
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Fig. 2. Representation of the Attributes 
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Fig. 3. A simple tree 
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than the distance from the ancestor to b. This property implies that the distance is in 
fact asymmetric; taking into account that the transitivity property of the distance, we 
can define the asymmetric distance between two nodes as:  

, ,( , ) ( , ) (1 ) ( , )a b a badist a dist lca dist lcab a bρ ρ= × + ×−  (3) 

where ρ is a generalization coefficient, and lcaa,b is the lowest common ancestor to 
node a and b. Notice that this coefficient implements the generalization property 
stated in section 0, which means that it must be included in the interval (0.5, 1]. In 
practice, ρ is learnt by trial and error on a subset of data. In our experiment, we have 
found that the optimal value lies close to ¾. However, this coefficient is task depend-
ent and will be greatly influenced by the ontology, which is also task dependent.       

After substituting the distance by one minus the similarity and simplifying equa-
tion (3), the asymmetric similarity can be decomposed between two nodes a and b as: 

, ,( , ) ( , ) (1 ) ( , )a b a basim a b sim a lca sim lca bρ ρ= × + − ×  (4) 

Furthermore, and by considering equation (2), we can define the similarity between 
a node a and the closest common ancestor of node a and b as the number of nodes on 
the path from the root to the common ancestor over the number of nodes on the path 
from the root to node a.  

,( , ( , )) | ( ) | | ( ) |a bsim a lca a b URN lca URN a=  (5) 

In this equation, URN(a) is the set of upward reachable nodes from node a to the 
root of the tree, which corresponds to the path of a to the tree root. Subsequently, 
URN(lcaa,b) is the set of nodes from the closest common ancestor of both nodes a and 
b to the root. Note that in our model, the root node is not contained in the path.  

By considering equations (4) and (5), we improve equation (2) to measure the simi-
larity between heterogeneous items o and p, which are respectively modeled by con-
cept c and d as:  

, ,| ( ) | | ( ) |
( , ) (1 )

| ( ) | | ( ) |
c d c dURN lca URN lca

asim c d
URN c URN d

ρ ρ= × + − ×  (6) 

Following this, if we know that a user has liked concept c with a score equal to x, 
then we can estimate that he or she will also like concept d by a score equal to 
x×asim(c, d). Consequently, if we know that a user has liked the domain value d2,1 

by a value y, then we can estimate that they will like d2,2 by a value equal to 
y×asim(d2,1, d2,2). Hence, we can make use of concept tree as user model to store 
the user’s utility values and also estimate missing ones by looking at the similarity 
between the concept representing the missing value and the nearest concept on 
which the user has expressed a preference.  

Once all the utility values are known, we propose a novel way of estimating the 
weights. Rather than eliciting the weights from the user, we suggest to estimate them 
by multiple regression. This is made possible by the fact that each user has rated a 
given number of items, and thus we can obtain a system of n equations with n  
unknowns. 
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3.2   Definitions 

Section 0 introduced the idea that attributes could be modeled by a concept tree, and 
that a concept tree could be used to estimate missing values. We can extend this idea 
on domain values, as they usually also have some kind of relationship between them. 
For example, if you like action movies then you will probably also like adventure 
movies, as action and adventure are closely related. We represent this information by 
an attribute concept tree, where the domain values are modeled by concepts, the value 
of the concept represents the user’s utility value, and the relationships between them 
are is-a relations. 

Definition 1. An attribute concept tree, ACT, is defined by the 8-tuple: <X, D, T, ≤, 
DCT, f , sim, comb >, where 

− X is a concept representing the attribute X, and linked to DCT with the binary rela-
tions hasDom. 

− D is the domain of the attribute X. 
− T defines the type of all the elements in D. 
− ≤  is an ordering relation on all the element of  D. 
− DCT is a concept tree modeling D, with the null concept as the root. 
− f is function f:d →c, where d ∈ D, c ∈ DCT. 
− sim is a function that computes the similarity between any two concepts in DCT. 
− comb is a function that estimates the value of a concept in DCT. 

 

(a)

 X3

      a 

      b       c 

    d      

    null       X2

     a         b 

     null 

(b) 

hasDom 

Is-a
DCT

DCT

 

Fig. 4. (a) ACT with is-a relationship between domain values, and (b) without 

Depending on the nature of the domain D, the DCT is built differently. When the 
domain D is discrete, the HAPPL technique exploits the is-a relationships in the do-
main D by building a hierarchy (Fig. 4.a). On the other hand, if a domain value is 
without any relationship, then it will be directly attached to the null concept (Fig 4.b). 
The null concept represents the null domain value, and is used if an object does not 
contain that attribute. However, if D is continuous, we tend to use the classic ordering 
(i.e. ≤ ), and each element of D is directly connected to the root concept as before. 
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Hence, if we know that two concepts are linked to the root concept, then we can de-
duce that they have nothing in common, and the similarity function will return zero. 

In many situations, different attributes represent the same concept or have similar 
meaning. In the computer domain, for example, the attributes processor speed and 
RAM are related because large memory usually implies a fast processor. Our model 
exploits this pattern by grouping similar attributes together in a set called a compound 
attribute. 

Definition 2. A compound attribute concept tree CACT is defined by the 7-tuple: <CA, 
Z , ≤ , AsCT, f , sim, comb >, where 

− CA is a compound attribute concept representing the compound attribute CA, and 
linked to AsCT with the binary relations hasDom. 

− Z is the set of attributes in CA. 
− ≤   is an ordering relation on all the element of  Z. 
− AsCT is a concept tree ontology modeling all the elements in Z and with the root 

concept as the root. 
− f is function f:d→c, where d ∈ Z, c ∈ AsCT. 
− sim is a function that computes the similarity between any two concepts in AsCT.  
− comb  is a function that estimates  the value of a concept in AsCT. 

Note that the concepts of a compound attribute concept tree are in fact attribute con-
cept trees. Informally, a CACT can be seen as a bi-dimensional ontology, where one 
dimension represents the attributes, while the other represents their corresponding 
domain values. Similarly to an ACT, if 2 attributes have no relation between them, 
then they will be attached to the root concept. 

Given an ontology λ made of CACTs, we see the heterogeneous attribute prefer-
ence propagation model (HAPPL) as a possible extension of the multi-attribute utility 
theory (MAUT), where all the outcomes are modeled by λ, and where the mutual 
preferential independence hypothesis holds on all the attributes. By generalizing the 
MAUT, we need to generalize equation (1). Thus given a problem where items are 
defined using the HAPPL model, the optimal solution is the item that maximizes the 
utility in equation (7). 

m
' ' '

i 1 0

( ) ( ) , ( ) ( )
in

k i i k i k j j k
j

V o w v o where v o w v o
= =

= =∑ ∑  (7) 

In this equation, m is the number of compound attributes defining the class modeling 
the items, and ni is the number of attributes in the compound attribute i.  The sub-
utility functions vj and v’i, and the weights w’i of the compound attributes are defined 
on the interval [-1, 1] and ∑|wi

’|=1. However, the weights wj are defined on the inter-
val [0,1] and ∑wj=1. Notice that this slightly differs from utility theory where utilities 
and weights are defined on the interval [0, 1]. This distinction was necessary to reflect 
the fact that in our model, a negative utility implies disliking by the user while a posi-
tive value implies liking.  

In our model, we apply the Equal Weight Policy [24] to compute the value of each 
wj, and use multiple regression to compute the weights w’i. The EWP consists of 
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assigning the same value (wj=1/ni) to each weight, while making sure that ∑wj=1. We 
have preferred this strategy as it has a very high relative accuracy compared to more 
complex one [24], while requiring no cognitive effort from the user.  The computation 
of the wi

’ is explained in more details in section 3.4.2. 
Finally, HAPPL estimates the missing utility value of concept c by propagating the 

average weighted utility value of the closest concepts on which we have preferences, 
{CCP}. Formally, the estimated utility value of a concept c is computed as follows:  

( )
{ }

0
{ }

0

( ) ( , )
( )

( , )

CCP

i i
i

CCP

i
i

utility CCP asim CCP c
utility c

asim CCP c

=

=

×
=
∑

∑
 (8) 

where CCPi is the ith closest concept on which we have a utility value, and asim is the 
similarity metric of the concept tree from which the concept c is instanced . The size 
of the CCP set plays a crucial role, and must be build in order to represent the domain 
we are modeling. Obviously and in general, the bigger the set, the more accurate will 
be the utility estimation. By definition of our problem, only a few values can be elic-
ited from the user, which means that a tradeoff as to be done. 

3.3   HAPPL Process 

The HAPPL algorithm is a four step iterative process as shown in Figure 5. 

  

Fig. 5. Illustration of the HAPPL Process 

3.3.1   Preference Elicitation 
The preference elicitation process is designed to be very simple and similar to col-
laborative filtering. Each user is asked to define a learning set (LS) composed of at 
least m outcomes with their associated ratings. The number m corresponds to the 
number of compound attributes, whilst the rating is usually an integer ranging from 
one to five.  

3.3.2   Parameter Estimation 
Once the elicitation is completed, we apply a simple algorithm, utilityEstimation, on 
the learning set in order to estimate as many utility values as possible. 

The algorithm works as follows. First we convert the rating of each movie in LS 
into a score, ranging in the interval [-1, 1].  
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Algorithm utilityEstimation(LS, )return CCP: 
 CCP  {};         
 for x LS loop         
  score  rating2score(x);    
  for d x loop        
   .f(d).utility .f(d).utility + score;
   .f(d).isCCP  true; 
 for c  loop         
  if .f(d).isCCP then      
    .c.utility .c.utility / |LS|;
    CCP  CCP .c;     
 return CCP; 

 

Then, and for each features of the movie x, d ∈ x, we add the score of the movie to the 
utility of the representative concept in the ontology λ, λ.f(d).utility + score. Re-
member that the representative concept of a domain value d is extracted from  λ by 
using the function f defined in section 3.2. Once all the movies in the learning set 
have been processed, and for all the concepts with a utility value, we normalize their 
utility values, λ.c.utility / |LS|,  and add the concept to the set CCP. Notice that the 
algorithm assumes the independence of the attributes, and does not look at any com-
bination what so ever. Note that our model is built on the additive utility model that 
makes such hypothesis. 

Unfortunately, the algorithm utilityEstimation is very unlikely to have computed 
the utility of each possible domain value. Consequently, we use another algorithm 
called utilityPropagtion that will estimate the missing utilities by propagating the 
utility values already known. This propagation is achieved by calling the function 
estimate MissingUtility that will take the set of known values, CCP, and apply  
equation (8).  

Algorithm utilityPropagation( , CCP):   
 for c c CCP loop     

.c.utility  estimateMissingUtility(c,CCP);
 

Once all the sub-utility functions have been computed, we have to estimate the 
weights of the compound attributes. After that, the utiliyPropagation algorithm has 
been applied, we are left with a system with at least m equations, m unknowns, and m 
grades. Thus, we use classical multiple regression (MR) to estimate the weights of the 
compound attributes. Finally, the weights are normalized to satisfy to the properties 
defined in section 3.2. 

3.3.3   Top-N Selection 
Once all the user parameters have been estimated, we can compute the utility of each 
outcome by applying equation (7). Then, we rank the outcomes in decreasing order of 
the computed utility and select the first N one; this is called the top-N items recom-
mendation strategy where N is a parameter set by the system (usually ∈ [3, 10]). 
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3.3.4   Refinement Process 
Finally, the user has the opportunity to add or remove outcomes from the learning set 
in order to refine his model. Furthermore, he can directly modify the utility value or 
weights assigned to each attribute. This allows building a dynamic user model using 
both implicit and explicit preferences. 

3.3.5   Complexity Analysis 
To simplify the complexity analysis, we will suppose that our model has m compound 
attributes, each consisting of r attributes and with n attributes in total. Among those r 
attributes, we have q attributes with known utility functions, and thus r-q without. The 
worst case complexity for the different component of our model is as follows: 

1. Elicitation Process: ask m questions to the user. Thus, the complexity is O(m). 
2. Utility Estimation: looks at the attributes of the m outcomes in LS. In the worst 

case scenario, all the outcomes have values on all the attributes which implies a 
complexity of O(mn). 

3. Utility Propagation: estimate the r-q missing values of each m compound attributes 
by looking at the similarities with its neighbors. If we assume that each concept in 
the ontology knows its depth, and knowing that n ≥ r, then our similarity function 
(6) will have a complexity of O(n). Thus, to estimate the missing values, equation 
(8) will look at the q neighbors. Thus, the complexity is O(qn).  

4. Weight Estimation: Villard has shown in [22] that the complexity for solving a 
linear system of m equations with m unknown is O(mw), with w~2.38.  

5. Top-N Selection: must compute the utility of all p items and then select the N best 
ones. The utility computation of an item can requires up to n operations. Thus, the 
top-N estimation requires p×n + plogp operations, if the MergeSort algorithm is 
being used. In most problems n>logp, which implies a complexity O(pn).  

In today’s system with millions of outcomes with tens of attributes, this implies 
that p>>n2.38. Thus, we can estimate the overall complexity of the HAPPL as O(pn). 

4   Experimental Results 

In this section, we explain the experimental methodology and the metric used to vali-
date the hypothesis of our model. We ran our model on the MovieLens2 data set. We 
used this data set as it is widely being used through out the research community 
[13][18][19], and it contains the data requires to solve our example given in the intro-
duction. MovieLens is a data set containing the rating of 943 users on at least 20 mov-
ies. There are 1682 movies in the database described by 19 themes (drama, action, 
and so forth). To increase the description of the movies, we wrote a wrapper that 
extracted the year, MPPA rating, duration, actors and directors (due to the high spar-
sity of the actors and directors, it was decided to ignore those attributes in our ex-
periments) from the IMDB3 website, given the movie’s URL. 

                                                           
2 http://www.cs.umm.edu/Research/GroupLens/data/ml-data.zip  
3 http://www.imdb.com 
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Unfortunately and to the best of our knowledge, there is no ontology modeling the 
movie domain. Thus, we created the concept trees from scratch based on our common 
sense, and from definitions found in various dictionaries. 

4.1   Overall Performance Analysis 

To benchmark our approach, we tested the accuracy of the HAPPL technique against 
existing recommendation techniques, and studied how many ratings were required by 
the parameters estimation algorithm in order to obtain an accurate model.  

The experiment was as follows. First, users with less than 115 ratings were re-
moved from the data set and for each remaining user, 15 ratings were inserted into a 
test set, while the rest was inserted into a temporary set. From the temporary set, 11 
learning sets of varying size were created in order to test the accuracy of the model. 
The size of the sets varied incrementally from 4 to 100 ratings, and with learn-
ing_seti+1 = learning_seti ∩ ratings_from_temporary_set.  Various techniques were 
used to estimate the weights and the utility functions from the learning set: the model 
defined in the previous section with a ρ set to 0.75 – HAPPL, random utility values 
for all the missing utility value but compound attributes’ weights estimated by multi-
ple regression– randFunc, and random compound attributes’ weights but with the 
utility values estimated by the ontology – randWeights. HAPPL was benchmarked on 
the users’ test set against two popular strategies:  

− random policy (RAND) which assigns a random rating to each movie in the test set. 
− the adjusted cosine collaborative filtering with 90 neighbors (CF). We did not 

implement the CF algorithm; instead, we used the freely available MultiLens4 
package with the filter ZScore which will allow us to perform adjusted cosine simi-
larity. We set the neighbors to 90 as authors [13][18] have shown that the optimal 
for the MovieLens data set is very close to this value. 

Collaborative Filtering algorithm was chosen as benchmark over classical content 
based filtering as it is known that it is today’s best performing filtering, and the most 
widely used recommendation system. Moreover, experimental results by Melvielle et 
al [12] have shown that CF performs better than pure content based filtering in the 
movie domain. Furthermore, content-based approach requires many ratings to train 
the user mode, which is not available in our situation. 

The top-5 policy was used to select the best movies to show to the user. For each 
strategy, all the movies in the test sets are sorted based on their predicted ratings, and  
the first five movies are returned as the recommended items.. In order to compare 
HAPPL with existing work, the accuracy of the recommendations was measured 
using the Mean Absolute Error (MAE), which measures the mean average deviation 
between the predicted rating and the user’s true ratings. Herlocker et al. in [9] have 
argued that MAE may be less appropriate measure when the granularity of the prefer-
ence is small. However, the problem we are solving has very sparse data, which leads 
to significant differences between the predicted ratings and the real user’s ratings.  
On the other hand, it was argued in [8] that the MAE has two main advantages:  

                                                           
4 http://knuth.luther.edu/~bmiller/multilens.html  
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simple to understand and has well studied statistical properties when comparing two  
approaches.   
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Fig. 6. Accuracy measure of various recommendation techniques bases on the number of 
known ratings in the learning set 

The experiment was run 5 times, and the averaged results are illustrated in Fig. 6. 
The graph shows that HAPPL can be used to build robust recommendation systems as 
it has the lowest MAE, whatever the size of the learning set. Our approach is sensitive 
on the quality of the preference value of the CCP set, which is shown by an in in-
crease in accuracy with increasing size of the learning set as However, after 60 rat-
ings, the accuracy slightly decreases, which is due to the over fitting of the user’s true 
preference value As expected, collaborative filtering performs poorly when the num-
ber of ratings in the learning set is very low. It rapidly improves until it reaches the 20 
ratings threshold, and then the improvement slows down. This is a well known effect 
that is due to the high data sparsity (sparsity>0.99), it also reflects the behavior of the 
systems when new items are added and need to be evaluated. These results clearly 
show that CF is unsuitable for volatile environments and low involvement users. On 
the other hand, the HAPPL approach performs well even with high data sparsity, with 
a mean average error of up to 76.4% lower. The student test reinforces this statement 
with a t-obs=-39.99 and p -value<< 0.01. The random policy was also plotted to see if 
our HAPPL approach does actually improve something; and with an MAE of ~1.09, it 
is clear that it does. 

An interesting aspect to consider is whether or not our utility propagation and es-
timation algorithm is better than just using random values? The graph clearly illus-
trates that HAPPL performs better than random values (randFunc) and statistical 
analysis showed that the improvement is significant when we had at least 10 ratings in 
the learning set (t-test: t-obs= 2.99, p-value=0.0016). This behavior makes sense and 
implies that a minimum of knowledge on some of the values must be known in order 
to estimate the rest of the utility values. Concerning the utility of the multiple regres-
sion to estimate the weights, we cannot assert anything as we obtained a p-value~0.1. 
However, the graph shows that HAPPL performs slightly better than randWeights, 
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whatever the size of the learning set. Finally, it is worth pointing out that with only 4 
ratings in the learning set, the HAPPL model is able to perform reasonable well. The 
optimal accuracy is obtained with 60 ratings in the learning set, which is 10% better 
that CF. Moreover, this experiment shows that HAPPL is quite robust as the accuracy 
hardly changes with varying size of the learning set. 

4.2   Ontology Influence 

Finally, we tested the influence of the ontology on the recommendation with the 
HAPPL technique defined in the previous section. For this experiment, HAPPL used 
the ontology made up from our common sense and from definitions found in various 
dictionaries (DictOntology). We also created a second ontology with a topology simi-
lar to the previous one, but rearranged randomly the concepts (RandOntology).  

We ran the experiment 5 times on users who had at least 65 ratings. From each 
user’s ratings, 10 were used in the learning set, and 15 others were inserted in the test. 
From those 10 ratings, we extracted using our utility estimation algorithm the prefer-
ence on a set of 5 representative attributes (RCset) and estimated the other utilities 
using HAPPL with: the optimized ontology (DictOntology), the random ontology 
(RandOntology), and randomly generated values as utilities (RandFunctions). 

Table 1. Accuracy measure of  the HAPPL based on various apprach to estimate the utilities 

 DictOntology RandOntology RandFunction 
MAE 0.809 0.873 0.887 

Table 1 shows the results obtained when applying the top-5 policy. As expected, 
DictOntology performed much better than RandOntology. As a matter of fact, the 
improvement is statistically very significant with an average tobs=-2.6 and p-
value<0.005. Furthermore, the HAPPL with the random ontology performed nearly as 
bad as when the utility functions where randomly generated.  

These results tend to prove two things. First, the ontology plays an important role 
in predicting the user’s preference. Second, the choice of the ontology is crucial as a 
bad one will perform badly. As mentioned in section 3, this paper does not focus on 
the construction of the ontology, but the results shows that our model could be used to 
evaluate the quality of the ontology, with respect to the user’s true ratings. 

4.3   Discussion 

Many researchers have tried to boost the accuracy of Collaborative Filtering. Mel-
vielle et al. [12] is probably the most famous work in this domain. They use a content-
based approach to try to fill up the CF’s matrix in order to avoid the sparsity problem 
and new-item problem. They performed experiments on the EachMovie data set, and 
obtained an improvement of 4% over classical CF when they have 25% of the ratings 
in the test set. With this configuration, HAPPL generates an improvement of over 
10%. However, MovieLens is a subset of the EachMovie data so we cannot draw any 
clear conclusion. Mobasher et al. in [13] improved CF by adding semantic context to 
the problem. They extracted the attribute values of each movie and from it created a 
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semantic matrix. This matrix is exploited in order to compute the similarity between 
two movies. Finally, they predicted the rating using a weighted combination of the 
semantic matrix result and CF. Their method shows very good performance, with up 
to 22% improvement on the MAE metric when data sparsity is high. The best im-
provement is achieved when the ratio of the learning / test set is around 0.3. At very 
low ratio, their improvement is around 15%, which is still 60% worse than our 
HAPPL technique.  
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Fig. 7. Accuracy of HAPPL, Hybrid, and Pop-
ularity techniques 

Fig. 8. Novelty of HAPPL and Hybrid comp-
ared to the Popularity technique 

Those results tend to show that we could improve our HAPPL technique by com-
bining it with CF. By doing that, we could improve the accuracy but we would then 
violate the user’s privacy, make it vulnerable to schilling attacks, and decrease the 
novelty. We tested this observation on users who had at least 65 ratings and imple-
mented three approaches:  

− HAPPL: our model defined in section 4.1 
− Popularity: select the most popular movies (learnt over users who had <65 ratings).  
− Hybrid: that combines HAPPL and Popularity by averaging the predicted grades. 

First, it is amazing to see (Fig. 7) that a simple popularity approach has a MAE of 
nearly 0.81, which performs even better than our model when we have just 5 ratings 
in the learning set. However, HAPPL quickly outperforms the popularity approach 
when the number of equations in the learning set increases. Notice that the popularity 
approach is a very basic collaborative strategy as it uses other people ratings to pre-
dict a movie’s rating. One major difference with CF is the fact that it does not use the 
actual user’s data, which explains why it performs so much better than CF when there 
is few ratings in the learning set. Our hybrid approach that combines the two previous 
techniques clearly improves the recommendation, especially when the number of 
learning equations is less than 30. This can be explained by the inaccuracy of our 
utility estimation algorithm when high data sparsity occurs. 

Finally, we tested the novelty of the HAPPL technique and the hybrid approach 
against the popularity approaches, and display the result in Fig. 8. In this paper, we 
define the novelty between two approaches a and b as the number of correct predic-
tions in the recommendations made by algorithm a that is not present in b over the 
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total number of correct prediction made by algorithm a. The results are very interest-
ing and show that our method has about 50% novelty in the prediction over classical 
popularity strategy, which tends to prove that HAPPL recommends more personalized 
results. Furthermore, and as with the MAE, HAPPL’s novelty remains constant what-
ever the size of the learning set. This tends to show that our method is robust, and that 
the propagation method works well even with very few data.  

As expected, the hybrid approach has low novelty score, around 20%, but higher 
accuracy than all the other approaches. This confirms our hypothesis that by trading 
off the privacy and novelty, we can improve overall recommendation accuracy.   

5   Conclusion 

As shown in our experiment, most of the existing recommendation techniques include 
insufficient inductive bias to obtain an accurate user model from the amount of data 
that is typically available. We have shown how ontologies can provide the right in-
ductive bias so that accurate recommendations are possible even with very little data 
about the user’s preferences. On experiments using the MovieLens data, they consis-
tently outperform collaborative filtering even when very little data is available.  

Note that our HAPPL technique does not use any information about other users’ 
preferences as in collaborative filtering. Instead, knowledge of what is common be-
havior is brought in through the ontology. The next step is now to apply ontology 
learning techniques to automatically construct reasonable ontologies for a given at-
tribute model of the items. This should allow to better fine-tune the ontology to actual 
user’s preferences, and achieve further significant performance gains. We also con-
sider using a collaborative approach, as well as a learning technique, to better estimate 
the generalization coefficient rather than using a fixed value. Finally, we would like to 
perform live experiments to test whether or not the refinement process allows the user 
to build more dynamic user model. 
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