2,187 research outputs found

    Hydrographic Study of Peirce Island Wastewater Treatment Plant Effluent in the Piscataqua River of Portsmouth, New Hampshire: Report of Findings from the December 10 – 14, 2012 Study Period

    Get PDF
    In order to assist the New Hampshire Department of Environmental Services (NHDES) evaluate the impact of treated wastewater effluent from Peirce Island Wastewater Treatment Plant (WWTP) to the Lower Piscataqua River and Portsmouth Harbor a hydrographic dye study was conducted in December 2012 in Portsmouth, NH. Eight (8) shellfish cages with American oysters (Crassostrea virginica) and blue mussels (Mytilus edulis) were deployed both upstream and downstream of the Peirce Island WWTP in the Piscataqua River, Little Harbor, and the entrance of Little Bay. Eight (8) mini CTDs that monitor conductivity/salinity, temperature, and depth, and six (6) moored fluorometers, which measure dye tagged effluent from the Peirce Island WWTP were attached to the subsurface cages. A fifty (50) gallon mixture of Rhodamine WT dye and distilled water was injected into WWTP on December 11, 2012 for a half tidal cycle (approximately 12.4 hours). Additionally, boat tracking fluorometers connected with a mobile geographic information system (GIS) were used to measure dye levels on the surface in situ and in real time. Microbiological analyses of fecal coliform (FC), male-specific coliphage (MSC), Norovirus (NoV) genogroup I (GI) and genogroup II (GII), and Adenovirus (AdV) were conducted on WWTP influent and effluent composite samples collected with automated samplers to determine the WWTP efficiency in reducing indicator bacteria and viruses. Microbiological sampling and testing of oysters and mussels from the eight (8) sentinel cages was conducted to assess the impact of WWTP effluent on shellfish growing areas and growing area classifications. Prior to conducting the study, the assumption was that the FDA’s recommended minimum dilution of 1000:1was not applicable in this situation because the recommended dilution is based on a WWTP having at least secondary treatment. The microbiological findings in shellfish samples, wastewater samples from the Peirce Island WWTP, and the results of the dye study, confirm that a minimum of 1,000:1 dilution with respect to Peirce Island WWTP is currently not applicable for this WWTP. The FDA and NHDES recommend continued MSC testing of wastewater samples from the WWTP before and after the WWTP upgrade. The FDA and NHDES recommend a future field study after the WWTP upgrade in order to delineate the 1,000:1 dilution zone

    Carbon Free Boston: Technical Summary

    Full text link
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/OVERVIEW: This technical summary is intended to argument the rest of the Carbon Free Boston technical reports that seek to achieve this goal of deep mitigation. This document provides below: a rationale for carbon neutrality, a high level description of Carbon Free Boston’s analytical approach; a summary of crosssector strategies; a high level analysis of air quality impacts; and, a brief analysis of off-road and street light emissions.Published versio

    Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP+PS1 transgenic mice

    Get PDF
    The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer\u27s disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombinant adeno-associated viral vectors expressing either native forms of NEP (NEP-n) or IDE (IDE-n), or engineered secreted forms of NEP (NEP-s) or IDE (IDE-s). In a six-week study, immunohistochemistry staining for total Aβ was significantly decreased in animals receiving the NEP-n and NEP-s but not for IDE-n or IDE-s in either the hippocampus or cortex. Congo red staining followed a similar trend revealing significant decreases in the hippocampus and the cortex for NEP-n and NEP-s treatment groups. Our results indicate that while rAAV-IDE does not have the same therapeutic potential as rAAV-NEP, rAAV-NEP-s and NEP-n are effective at reducing amyloid loads, and both of these vectors continue to have significant effects nine months post-injection. As such, they may be considered reasonable candidates for gene therapy trials in AD

    TDP-43 Mediated Blood-Brain Barrier Permeability and Leukocyte Infiltration Promote Neurodegeneration in a Low-Grade Systemic Inflammation Mouse Model

    Get PDF
    BACKGROUND: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer\u27s Disease (AD). Emerging evidence also indicates that systemic inflammation may be a contributor to the pathology progression of these neurodegenerative diseases. METHODS: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9 particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were then subjected to a low-dose (500 μg/kg) intraperitoneal E. coli lipopolysaccharide (LPS) administration challenge for 2 weeks to mimic a chronically altered low-grade systemic inflammatory state. Mice were then subjected to neurobehavioral studies, followed by biochemical and immunohistochemical analyses of the brain tissue. RESULTS: In the present study, we report that elevated neuronal TDP-43 levels induced microglial and astrocytic activation in the cortex of injected mice followed by increased RANTES signaling. Moreover, overexpression of TDP-43 exerted abundant mouse immunoglobulin G (IgG), CD3, and CD4+ T cell infiltration as well as endothelial and pericyte activation suggesting increased blood-brain barrier permeability. The BBB permeability in TDP-43 overexpressing brains yielded the frontal cortex vulnerable to the systemic inflammatory response following LPS treatment, leading to marked neutrophil infiltration, neuronal loss, reduced synaptosome-associated protein 25 (SNAP-25) levels, and behavioral impairments in the radial arm water maze (RAWM) task. CONCLUSIONS: These results reveal a novel role for TDP-43 in BBB permeability and leukocyte recruitment, indicating complex intermolecular interactions between an altered systemic inflammatory state and pathologically prone TDP-43 protein to promote disease progression

    Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition

    Get PDF
    INTRODUCTION: Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy. METHODS: We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume). RESULTS: We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically. CONCLUSION: Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology

    Loss of mouse Stmn2 function causes motor neuropathy

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS

    Aberrant \u3ci\u3eAZIN2\u3c/i\u3e and Polyamine Metabolism Precipitates Tau Neuropathology

    Get PDF
    Tauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing. Transient increases in polyamine metabolism hallmark the cell’s response to various insults, known as the polyamine stress response (PSR). Dysregulation of gene transcripts associated with polyamine metabolism in Alzheimer’s disease (AD) brains were observed, and we found that ornithine decarboxylase antizyme inhibitor 2 (AZIN2) increased to the greatest extent. We showed that sustained AZIN2 overexpression elicited a maladaptive PSR in mice with underlying tauopathy (MAPT P301S; PS19). AZIN2 also increased acetylpolyamines, augmented tau deposition, and promoted cognitive and affective behavioral impairments. Higher-order polyamines displaced microtubule-associated tau to facilitate polymerization but also decreased tau seeding and oligomerization. Conversely, acetylpolyamines promoted tau seeding and oligomers. These data suggest that tauopathies launch an altered enzymatic signature that endorses a feed-forward cycle of disease progression. Taken together, the tau-induced PSR affects behavior and disease continuance, but may also position the polyamine pathway as a potential entry point for plausible targets and treatments of tauopathy, including AD

    A 'third way' for football fandom research: Anthony Giddens and Structuration Theory

    Get PDF
    Although football fans actively discuss all of the 'big players' within their practice, the same cannot be said for sociologists of sport. Anthony Giddens is a world renowned intellectual and author of some of the most predominant sociological texts of the last millennium. He is the most frequently cited contemporary sociologist spanning all aspects of the social sciences, and yet his work is seldom referred to or used within the sociology of sport. In response to this and in reaction to calls from authors such as Williams to re-think football fandom, this article aims to explore the potential of Giddens 'Structuration Theory' (ST) for moving the sociology of sport closer towards meeting this end. It draws on in-depth qualitative interviews with thirty football fans. The findings of these and their implications are discussed in relation to the 'everyday' processes of fandom
    • …
    corecore