261 research outputs found

    STUDYING INFLAMMATORY RESPONSES OF ENDOTHELIAL CELLS AND LEUKOCYTES IN PERFUSED MICROCHANNELS

    Get PDF
    ABSTRACT Circulating leukocytes must adhere to the endothelial cells (EC) that form the lining of blood vessels, and migrate through them to carry out their protective immune functions. During inflammation this recruitment is typically controlled by cytokines released from tissue that act on the EC. The endothelial cells respond by increasing the expression of adhesion molecules on their surface (to capture flowing leukocytes), and also by presenting chemotactic agents (to induce the captured cells to migrate). This recruitment process is influenced by the local haemodynamic milieu in several ways: interactions with red cells modify the distribution of leukocytes in the blood stream; flow velocity and shear stress influence the formation and breakage of adhesive bonds; flow forces act on EC and modify their responses to inflammmatory cytokines. Microchannels have been widely used to study these processes, especially the specific receptors required for capture of isolated flowing leukocytes and their ability to support adhesion as a function of fluid shear stress. We developed a versatile system based on pre-fabricated glass capillaries with rectangular cross-section (microslides) in which we cultured EC, and which could also be coated with purified adhesion receptors for reductive studies. We also developed fluoresencemicroscope-based systems for using these microslides to observe adhesion in flowing whole blood, and multiple parallel cultures for studying the effects of conditioning the EC by growth at different levels of shear stress before investigations. The microslides are available in various dimensions, and smaller versions can be used to generate high circulatory stresses when small volumes of materials (such as blood from genetically modified mice) are available. With these systems, we have for instance, been able to show how varying the concentration and aggregability of red blood cells alters leukocyte adhesion, and how expression levels of endothelial genes which underly inflammatory responses are modified by culture at a range of shear stresses mimicking different regions of the circulation

    Analyzing the effects of stromal cells on the recruitment of leukocytes from flow

    Get PDF
    Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro “vascular” models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation

    Direct observations of the kinetics of migrating T-cells suggest active retention by endothelial cells with continual bidirectional migration.

    Get PDF
    The kinetics and regulatory mechanisms of T-cell migration through endothelium have not been fully defined. In experimental filter-based assays in vitro, transmigration of lymphocytes takes hours, compared to minutes in vivo. We cultured endothelial cell (EC) monolayers on filters, solid substrates or collagen gels, and treated them with tumour necrosis factor-α (TNF), interferon-γ (IFN), or both, prior to analysis of lymphocyte migration in the presence or absence of flow. Peripheral blood lymphocytes (PBL), CD4+ cells or CD8+ cells, took many hours to migrate through EC-filter constructs for all cytokine treatments. However, direct microscopic observations of EC-filters which had been mounted in a flow chamber showed that PBL crossed the endothelial monolayer in minutes and were highly motile in the subendothelial space. Migration through EC was also observed on clear plastic, with or without flow. After brief settling without flow, PBL and isolated CD3+ or CD4+ cells all crossed EC in minutes, but the numbers of migrated cells varied little with time. Close observation revealed that lymphocytes continuously migrated back and forth across endothelium. Under flow, migration kinetics and the proportions migrating back and forth were little altered. On collagen gels, PBL again crossed EC in minutes and migrated back and forth, but showed little penetration of the gel over hours.In contrast, neutrophils migrated efficiently through EC and into gels. These observations suggest a novel model for lymphoid migration, in which endothelial cells support migration but retain lymphocytes (as opposed to neutrophils), and additional signal(s) are required for onward migration

    Modulation of VEGF-induced migration and network formation by lymphatic endothelial cells:Roles of platelets and podoplanin

    Get PDF
    Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway

    Infection and transmission dynamics of rKSHV.219 in primary endothelial cells

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiologic agent of Kaposi's sarcoma (KS), a tumour of endothelial cell origin. The study of KS development was aided by the generation of a recombinant GFP (latent)/RFP (lytic)-expressing KSHV (rKSHV.219) by Vieira and O’Hearn (2004). In this study the first data characterising primary endothelial cell infection and transmission with this virus is presented. Infection was predominantly latent and the percentage of GFP-positive cells increased over time. Neither horizontal transmission of infection, nor cellular proliferation, explained this increase. Analysis of latency-associated nuclear antigen (LANA-1) expression revealed that a threshold level of infection was required for GFP expression early post infection. At later time points GFP correlated more closely with LANA-1 expression, likely due to the accumulation of GFP over time. This study provides methodological guidance for the use of rKSHV.21. In addition, it highlights potential problems associated with the use of fluorescent proteins as markers of viral infection

    Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    Get PDF
    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures

    Analysis of the effects of stromal cells on the migration of lymphocytes into and through inflamed tissue using 3-D culture models

    Get PDF
    AbstractStromal cells may regulate the recruitment and behaviour of leukocytes during an inflammatory response, potentially through interaction with the endothelial cells (EC) and the leukocytes themselves. Here we describe new in vitro methodologies to characterise the effects of stromal cells on the migration of lymphocytes through endothelium and its underlying matrix. Three-dimensional tissue-like constructs were created in which EC were cultured above a stromal layer incorporating fibroblasts either as a monolayer on a porous filter or dispersed within a matrix of collagen type 1. A major advantage of these constructs is that they enable each step in leukocyte migration to be analysed in sequence (migration through EC and then stroma), as would occur in vivo. Migrated cells can also be retrieved from the constructs to identify which subsets traffic more effectively and how their functional responses evolve during migration. We found that culture of EC with dermal fibroblasts promoted lymphocyte transendothelial migration but not onward transit through matrix. A critical factor influencing the effect of fibroblasts on recruitment proved to be their proximity to the EC, with direct contact tending to disrupt migration. Comparison of the different approaches indicates that choice of an appropriate 3-D model enables the steps in lymphocyte entry into tissue to be studied in sequence, the regulatory mechanism to be dissected, and the effects of changes in stroma to be investigated

    Tailoring iridium luminescence and gold nanoparticle size for imaging of microvascular blood flow

    Get PDF
    Aim: Imaging of blood flow in narrow channels and close to vessel walls is important in cardiovascular research for understanding pathogenesis. Our aim was to provide novel nanoprobes with visible emission and long lifetimes as trackers of flow. Materials & methods: Gold nanoparticles coated with an iridium complex were prepared. Luminescence imaging was used to monitor their flows in different hematocrit blood and in murine tissues. Results: The velocities are independent of hematocrit level and the nanoparticles entering blood circulation can be clearly detected in vessels in lungs, mesentery and the skeletal muscle. Conclusion: The work introduces for the first time iridium-based yellow-green luminescence with nanoparticle size of 100 nm for visualizing and monitoring flows with much higher resolution than conventional alternatives

    Interaction between integrin α9β1 and vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil apoptosis

    Get PDF
    According to the prevailing paradigm, neutrophils are short-lived cells that undergo spontaneous apoptosis within 24 hours of their release from the bone marrow. However, neutrophil survival can be significantly prolonged within inflamed tissue by cytokines, inflammatory mediators, and hypoxia. During screening experiments aimed at identifying the effect of the adhesive microenvironment on neutrophil survival, we found that VCAM-1 (CD106) was able to delay both spontaneous and Fas-induced apoptosis. VCAM-1-mediated survival was as efficient as that induced by the cytokine IFN-β and provided an additive, increased delay in apoptosis when given in combination with IFN-β. VCAM-1 delivered its antiapoptotic effect through binding the integrin α9β1. The α9β 1 signaling pathway shares significant features with the IFN-β survival signaling pathway, requiring PI3 kinase, NF-κB activation, as well as de novo protein synthesis, but the kinetics of NF-κB activation by VCAM-1 were slower and more sustained compared with IFN-β. This study demonstrates a novel functional role for α9β1 in neutrophil biology and suggests that adhesive signaling pathways provide an important extrinsic checkpoint for the resolution of inflammatory responses in tissues

    Identification of a lysosomal pathway regulating degradation of the bone morphogenetic protein receptor type II.

    Get PDF
    Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented. Here we show that KSHV infection reduces cell surface BMPR-II. We propose that this occurs through the expression of the viral lytic gene, K5, a ubiquitin E3 ligase. Ectopic expression of K5 leads to BMPR-II ubiquitination and lysosomal degradation with a consequent decrease in BMP signaling. The down-regulation by K5 is dependent on both its RING domain and a membrane-proximal lysine in the cytoplasmic domain of BMPR-II. We demonstrate that expression of BMPR-II protein is constitutively regulated by lysosomal degradation in vascular cells and provide preliminary evidence for the involvement of the mammalian E3 ligase, Itch, in the constitutive degradation of BMPR-II. Disruption of BMP signaling may therefore play a role in the pathobiology of diseases caused by KSHV infection, as well as KSHV-associated tumorigenesis and vascular disease
    corecore