13 research outputs found

    Uroguanylin induces electroencephalographic spikes in rats

    No full text
    Uroguanylin (UGN) is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG) in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min). The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03). No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels

    Uroguanylin induces electroencephalographic spikes in rats

    No full text
    Uroguanylin (UGN) is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG) in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min). The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03). No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels

    BTCI enhances guanylin-induced natriuresis and promotes renal glomerular and tubular effects

    Get PDF
    Guanylin and uroguanylin are small cysteine-rich peptides involved in the regulation of fluid and electrolyte homeostasis through binding and activation of guanylyl cyclases signaling molecules expressed in intestine and kidney. Guanylin is less potent than uroguanylin as a natriuretic agent and is degraded in vitro by chymotrypsin due to unique structural features in the bioactive moiety of the peptide. Thus, the aim of this study was to verify whether or not guanylin is degraded by chymotrypsin-like proteases present in the kidney brush-border membranes. The isolated perfused rat kidney assay was used in this regard. Guanylin (0.2 µM) induced no changes in kidney function. However, when pretreated by the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI - 1.0 µM; guanylin - 0.2 µM) it promoted increases in urine flow (deltaUF of 0.25 &plusmn; 0.09 mL.g-1/min, P < 0.05) and Na+ excretion (% delta ENa+ of 18.20 &plusmn; 2.17, P < 0.05). BTCI (1.0 µM) also increased %ENa+ (from 22.8 &plusmn; 1.30 to 34.4 &plusmn; 3.48, P < 0.05, 90 minutes). Furthermore, BTCI (3.0 µM) induced increases in glomerular filtration rate (GFR; from 0.96 &plusmn; 0.02 to 1.28 0.02 mL.g-1/min, P < 0.05, 60 minutes). The present paper strongly suggests that chymotrypsin-like proteases play a role in renal metabolism of guanylin and describes for the first time renal effects induced by a member of the Bowman-Birk family of protease inhibitors

    BTCI enhances guanylin-induced natriuresis and promotes renal glomerular and tubular effects

    No full text
    Guanylin and uroguanylin are small cysteine-rich peptides involved in the regulation of fluid and electrolyte homeostasis through binding and activation of guanylyl cyclases signaling molecules expressed in intestine and kidney. Guanylin is less potent than uroguanylin as a natriuretic agent and is degraded in vitro by chymotrypsin due to unique structural features in the bioactive moiety of the peptide. Thus, the aim of this study was to verify whether or not guanylin is degraded by chymotrypsin-like proteases present in the kidney brush-border membranes. The isolated perfused rat kidney assay was used in this regard. Guanylin (0.2 µM) induced no changes in kidney function. However, when pretreated by the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI - 1.0 µM; guanylin - 0.2 µM) it promoted increases in urine flow (deltaUF of 0.25 ± 0.09 mL.g-1/min, P < 0.05) and Na+ excretion (% delta ENa+ of 18.20 ± 2.17, P < 0.05). BTCI (1.0 µM) also increased %ENa+ (from 22.8 ± 1.30 to 34.4 ± 3.48, P < 0.05, 90 minutes). Furthermore, BTCI (3.0 µM) induced increases in glomerular filtration rate (GFR; from 0.96 ± 0.02 to 1.28 0.02 mL.g-1/min, P < 0.05, 60 minutes). The present paper strongly suggests that chymotrypsin-like proteases play a role in renal metabolism of guanylin and describes for the first time renal effects induced by a member of the Bowman-Birk family of protease inhibitors

    Phentolamine relaxes human corpus cavernosum by a nonadrenergic mechanism activating ATP-sensitive K+ channel

    No full text
    To investigate the pharmacodynamics of phentolamine in human corpus cavernosum (HCC) with special attention to the role of the K+ channels. Strips of HCC precontracted with nonadrenergic stimuli and kept in isometric organ bath immersed in a modified Krebs - Henseleit solution enriched with guanethidine and indomethacine were used in order to study the mechanism of the phentolamine-induced relaxation. Phentolamine caused relaxation (approximate to50%) in HCC strips precontracted with K+ 40 mM. This effect was not blocked by tetrodotoxin ( 1 muM) (54.6 +/- 4.6 vs 48.9 +/- 6.4%) or (atropine ( 10 muM) (52.7 +/- 6.5 vs 58.6 +/- 5.6%). However, this relaxation was significantly attenuated by L-NAME (100 muM) (59.7 +/- 5.8 vs 27.8 +/- 7.1%; P<0.05; n = 8) and ODQ (100 &mu;M) (62.7 +/- 5.1 vs 26.8 +/- 3.9%; P<0.05; n = 8). Charybdotoxin and apamin (K-Ca-channel blockers) did not affect the phentolamine relaxations (54.6 +/- 4.6 vs 59.3 +/- 5.2%). Glibenclamide (100 muM), an inhibitor of K-ATP-channel, caused a significant inhibition (56.7 +/- 6.3 vs 11.3 +/- 2.3%; P<0.05; n = 8) of the phentolamine-induced relaxation. In addition, the association of glibenclamide and L-NAME almost abolished the phentolamine-mediated relaxation (54.6 +/-5.6 vs 5.7 +/- 1.4%; P<0.05; n = 8). The results suggest that phentolamine relaxes HCC by a nonadrenergic noncholinergic mechanism dependent on nitric oxide synthase activity and activation of K-ATP-channel.171273

    BTCI enhances guanylin-induced natriuresis and promotes renal glomerular and tubular

    No full text
    Abstract Guanylin and uroguanylin are small cysteine-rich peptides involved in the regulation of fluid and electrolyte homeostasis through binding and activation of guanylyl cyclases signaling molecules expressed in intestine and kidney. Guanylin is less potent than uroguanylin as a natriuretic agent and is degraded in vitro by chymotrypsin due to unique structural features in the bioactive moiety of the peptide. Thus, the aim of this study was to verify whether or not guanylin is degraded by chymotrypsin-like proteases present in the kidney brush-border membranes. The isolated perfused rat kidney assay was used in this regard. Guanylin (0.2 µM) induced no changes in kidney function. However, when pretreated by the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI -1.0 µM; guanylin -0.2 µM) it promoted increases in urine flow (ΔUF of 0.25 ± 0.09 mL.g -1 /min, P &lt; 0.05) and Na + excretion (% Δ ENa + of 18.20 ± 2.17, P &lt; 0.05). BTCI (1.0 µM) also increased %ENa + (from 22.8 ± 1.30 to 34.4 ± 3.48, P &lt; 0.05, 90 minutes). Furthermore, BTCI (3.0 µM) induced increases in glomerular filtration rate (GFR; from 0.96 ± 0.02 to 1.28 ± 0.02 mL.g -1 /min, P &lt; 0.05, 60 minutes). The present paper strongly suggests that chymotrypsin-like proteases play a role in renal metabolism of guanylin and describes for the first time renal effects induced by a member of the Bowman-Birk family of protease inhibitors. Keywords: natriuresis, kidney, Bowman-Birk protease inhibitors, BTCI, cyclic GMP, Vignia unguiculata. BTCI aumenta a natirurese induzida por guanilina e promove efeitos renais glomerulares e tubulares Resumo Guanilina e uroguanilina são peptídeos pequenos, ricos em cisteína, envolvidos na regulação da homeostase de fluidos e eletrólitos através da ligação e ativação da guanilato ciclase expressa no intestino e nos rins. A guanilina é menos potente do que a uroguanilina como agente natriurético e é degradada in vitro pela quimiotripsina devido a caracterís-ticas estruturais únicas no domínio bioativo do peptídeo. Portanto o objetivo deste trabalho foi verificar se a guanilina é degradada por proteases tipo quimiotripsina, presentes na membrana da borda em escova dos rins. Para esta investigação, foi usado o modelo do rim isolado de rato perfundido. A Guanilina (0,2 µM) não induziu mudanças na função renal. Entretanto, quando pré-tratada com inibidor de tripsina e de quimiotripsina de black-eyed pea (BTCI -1,0 µM; guanilina -0,2 µM) promoveu um aumento no fluxo urinário (ΔUF de 0,25 ± 0,09 mL.g -1 /min, P &lt; 0,05) e na excreção de Na + (%ΔENa + de 18,20 ± 2,17, P &lt; 0,05). BTCI (1,0 µM) também aumenta %ENa + (de 22,8 ± 1,30 a 34,4 ± 3,48, P &lt; 0,0590 minutos). Além disto, BTCI (3,0 µM) induziu um aumento da taxa de filtração glomerular (GFR; de 0,96 ± 0,02 para 1,28 ± 0,02 mL.g -1 /min, P &lt; 0,05, 60 minutos). O presente trabalho sugere fortemente que proteases semelhantes à quimiotripsina desempenham um papel no metabolismo renal de guanilinas e descreve, pela primeira vez, os efeitos renais induzidos por um membro da família de inibidores de proteases do tipo Bowman-Birk. Palavras-chave: natriurese, rim, Inibidores de proteases tipo Bowman-Birk, BTCI, GMP cíclico, Vignia unguiculata. Carvalho, AF. et al

    The extract of the jellyfish Phyllorhiza punctata promotes neurotoxic effects

    No full text
    Phyllorhiza punctata (P. punctata) is a jellyfish native to the southwestern Pacific. Herewith we present the biochemical and pharmacological characterization of an extract of the tentacles of P. punctata. The tentacles were subjected to three freezethaw cycles, homogenized, ultrafiltered, precipitated, centrifuged and lyophilized to obtain a crude extract (PHY-N). Paralytic shellfish poisoning compounds such as saxitoxin, gonyautoxin-4, tetrodotoxin and brevetoxin-2, as well as several secretory phospholipase A2 were identified. PHY-N was tested on autonomic and somatic neuromuscular preparations. In mouse vas deferens, PHY-N induced phasic contractions that reached a peak of 234 +/- 34.7% of control twitch height, which were blocked with either 100 mu m of phentolamine or 1m m of lidocaine. In mouse corpora cavernosa, PHY-N evoked a relaxation response, which was blocked with either L-NG-Nitroarginine methyl ester (0.5 m m) or 1m m of lidocaine. PHY-N (1, 3 and 10 mu g ml(-1)) induced an increase in tonus of the biventercervicis neuromuscular preparation that was blocked with pre-treatment of galamine (10 mu m). Administration of 6 mg kg(-1) PHY-N intramuscularly produced death in broilers by spastic paralysis. In conclusion, PHY-N induces nerve depolarization and nonspecifically increases neurotransmitter release. Copyright (C) 2011 John Wiley & Sons, Ltd.318720729Fundacao Cearense de Apoio a Pesquisa (FUNCAP

    Renal effects and vascular reactivity induced by Tityus serrulatus venom

    No full text
    Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved
    corecore