3 research outputs found

    mRNA translation from an antigen presentation perspective: A tribute to the works of Nilabh Shastri

    No full text
    The field of mRNA translation has witnessed an impressive expansion in the last decade. The once standard model of translation initiation has undergone, and is still undergoing, a major overhaul, partly due to more recent technical advancements detailing, for example, initiation at non-AUG codons. However, some of the pioneering works in this area have come from immunology and more precisely from the field of antigen presentation to the major histocompatibility class I (MHC-I) pathway. Despite early innovative studies from the lab of Nilabh Shastri demonstrating alternative mRNA translation initiation as a source for MHC-I peptide substrates, the mRNA translation field did not include these into their models. It was not until the introduction of the ribo-sequence technique that the extent of non-canonical translation initiation became widely acknowledged. The detection of peptides on MHC-I molecules by CD8 + T cells is extremely sensitive, making this a superior model system for studying alternative mRNA translation initiation from specific mRNAs. In view of this, we give a brief history on alternative initiation from an immunology perspective and its fundamental role in allowing the immune system to distinguish self from non-self and at the same time pay tribute to the works of Nilabh Shastri

    Major histocompatibility class I antigenic peptides derived from translation of pre-mRNAs generate immune tolerance

    No full text
    Antigenic peptides derived from introns are presented on major histocompatibility (MHC) class I molecules, but how these peptides are produced is poorly understood. Here, we show that an MHC class I epitope (SL8) sequence inserted in the second intron of the β-globin gene in a C57BL/6 mouse (HBB) generates immune tolerance. Introduction of SL8-specific CD8+ T cells derived from OT-1 transgenic mice resulted in a threefold increase in OT-1 T cell proliferation in HBB animals, as compared to wild-type animals. The growth of MCA sarcoma cells expressing the intron-derived SL8 epitope was suppressed in wild-type animals compared to HBB mice. The β-globin pre-mRNA was detected in the light polysomal fraction, and introducing stop codons identified a non-AUG initiation site between +228 and +255 nts upstream of the SL8. Isolation of ribosome footprints confirmed translation initiation within this 27 nt sequence. Furthermore, treatment with splicing inhibitor shifts the translation of the pre-mRNA to monosomal fractions and results in an increase of intron-derived peptide substrate as shown by polysome profiling and cell imaging. These results show that non-AUG-initiated translation of pre-mRNAs generates peptides for MHC class I immune tolerance and helps explain why alternative tissue-specific splicing is tolerated by the immune system
    corecore