111 research outputs found

    A free real-time hourly tilted solar irradiation data Website for Europe

    Get PDF
    The engineering of solar power applications, such as photovoltaic energy (PV) or thermal solar energy requires the knowledge of the solar resource available for the solar energy system. This solar resource is generally obtained from datasets, and is either measured by ground-stations, through the use of pyranometers, or by satellites. The solar irradiation data are generally not free, and their cost can be high, in particular if high temporal resolution is required, such as hourly data. In this work, we present an alternative method to provide free hourly global solar tilted irradiation data for the whole European territory through a web platform. The method that we have developed generates solar irradiation data from a combination of clear-sky simulations and weather conditions data. The results are publicly available for free through Soweda, a Web interface. To our knowledge, this is the first time that hourly solar irradiance data are made available online, in real-time, and for free, to the public. The accuracy of these data is not suitable for applications that require high data accuracy, but can be very useful for other applications that only require a rough estimate of solar irradiation.Comment: 3 pages, 2 figures, conference proceedings, 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014, Amsterda

    Automatic fault detection on BIPV systems without solar irradiation data

    Get PDF
    BIPV systems are small PV generation units spread out over the territory, and whose characteristics are very diverse. This makes difficult a cost-effective procedure for monitoring, fault detection, performance analyses, operation and maintenance. As a result, many problems affecting BIPV systems go undetected. In order to carry out effective automatic fault detection procedures, we need a performance indicator that is reliable and that can be applied on many PV systems at a very low cost. The existing approaches for analyzing the performance of PV systems are often based on the Performance Ratio (PR), whose accuracy depends on good solar irradiation data, which in turn can be very difficult to obtain or cost-prohibitive for the BIPV owner. We present an alternative fault detection procedure based on a performance indicator that can be constructed on the sole basis of the energy production data measured at the BIPV systems. This procedure does not require the input of operating conditions data, such as solar irradiation, air temperature, or wind speed. The performance indicator, called Performance to Peers (P2P), is constructed from spatial and temporal correlations between the energy output of neighboring and similar PV systems. This method was developed from the analysis of the energy production data of approximately 10,000 BIPV systems located in Europe. The results of our procedure are illustrated on the hourly, daily and monthly data monitored during one year at one BIPV system located in the South of Belgium. Our results confirm that it is possible to carry out automatic fault detection procedures without solar irradiation data. P2P proves to be more stable than PR most of the time, and thus constitutes a more reliable performance indicator for fault detection procedures.Comment: 7 pages, 8 figures, conference proceedings, 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, 201

    Operational costs and reliability in a large rural electrification programme based on solar home systems

    Get PDF
    Experiences in decentralized rural electrification programmes using solar home systems have suffered difficulties during the operation and maintenance phase, due in many cases, to the underestimation of the maintenance cost, because of the decentralized character of the activity, and also because the reliability of the solar home system components is frequently unknown. This paper reports on the reliability study and cost characterization achieved in a large photovoltaic rural electrification programme carried out in Morocco. The paper aims to determinate the reliability features of the solar systems, focusing in the in-field testing for batteries and photovoltaic modules. The degradation rates for batteries and PV modules have been extracted from the in-field experiments. On the other hand, the main costs related to the operation and maintenance activity have been identified with the aim of establishing the main factors that lead to the failure of the quality sustainability in many rural electrification programmes

    Fiabilidad y costes de mantenimiento en un programa de electrificación rural de 13.000 solar home systems

    Get PDF
    La electrificación rural fotovoltaica ha experimentado últimamente un salto de escala tanto en la dimensión de sus programas como en sus sistemas de gestión. Garantizar la calidad técnica ya no se reduce solamente a la fase de diseño e instalación, sino también a la de operación y mantenimiento. El presente trabajo trata de caracterizar la fase de operación del programa de electrificación rural fotovoltaico de Marruecos sobre el cual se ha llevado a cabo un exhaustivo estudio de fiabilidad de los distintos componentes que integran los sistemas solares (SHS), así como una evaluación de los costes unitarios ligados al mantenimiento, analizando su impacto en la estructura general de costes del programa. Los resultados van dirigidos hacia la caracterización de un modelo de la estructura de mantenimiento que logre asegurar la sostenibilidad de este tipo de programas

    Electrificación rural fotovoltaica "Solar Home Systems". Fiabilidad y costes de mantenimiento

    Get PDF
    La electrificación rural fotovoltaica ha experimentado últimamente un salto de escala tanto en la dimensión de sus programas como en sus sistemas de gestión. Garantizar la calidad técnica ya no se reduce solamente a la fase de dise~o e instalación, sino también a la de operación y mantenimiento. El estudio del Instituto de Energfa Solar de la Universidad Politécnica de Madrid trata de caracterizar la fase de ope ración del programa de electrificación rural fotovoltaico de Marruecos sobre el cual se ha llevado a cabo un exhaustivo estudio de fiabilidad de los distintos componentes que integran los denominados Solar Heme 5ysrems (SHS). Ase como una evaluación de los costes unitarios ligados al mantenimiento, analizando su impacto en la estructura general de costes del programa. Los resultados van dirigidos hacia la caracterización de un modelo de la estructura de mantenimiento que logre asegurar la sostenibilidad de este tipo de programas energéticos

    Characterisation and efficiency test of a li-ion energy storage system for PV systems

    Full text link
    Li-ion batteries are modern electrical energy storage systems which are undergoing an intense development in their technological features. Their high specific energy, efficiency and durability, together with the lowering of their production costs, are placing them as one of the most promising actors in the field of electrical energy storage technology used as tool for integrating renewable energy sources. But due to the fact that they are in an early stage of development, their reliability must be trusted. This paper describes a method and the results for testing round trip efficiencies of a modern Li-ion battery based energy storage system integrated in a PV system. According to the related standards, the efficiency of a battery and an inverter/charger has been characterised, under technical restrictions and specific operation conditions for its use with PV systems

    Performance Analysis of 10,000 Residential PV Systems in France and Belgium

    Get PDF
    The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value

    Review of the Performance of Residential PV systems in France

    Full text link
    The main objective of this paper is to review the state of the art of residential PV systems in France. This is done analyzing the operational data of 6868 installations. Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% and the mean Performance Index is 85%. That is to say, the energy produced by a typical PV system in France is 15% inferior to the energy produced by a very high quality PV system. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer's datasheet. A brief analysis by PV modules technology has led to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with heterojunction with intrinsic thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with the copper indium (di)selenide (CIS) modules show a real power that is 16% lower than their nominal value

    Operational costs of A 13,000 solar home systems rural electrification programme

    Get PDF
    This paper presents an assessment and evaluation of the costs of operation and maintenance (O&M) in a real PV rural electrification (PVRE) programme, with the aim of characterizing its costs structure. Based on the extracted data of the 5-years operational costs of a private operator, the programme has been analyzed to take out the most relevant costs involved in the O&M phase as well as the comparative appraisal between the 3 main activities: installation, O&M and management. Through this study we try to answer to the new challenge of decentralized rural electrification based on larger programmes (with tens of thousands of SHSs) and longer maintenance and operation periods (at least 10 years)

    Implementation and validation of a self-consumption maximization energy management strategy in a Vanadium Redox Flow BIPV demonstrator

    Get PDF
    This paper presents the results of the implementation of a self-consumption maximization strategy tested in a real-scale Vanadium Redox Flow Battery (VRFB) (5 kW, 60 kWh) and Building Integrated Photovoltaics (BIPV) demonstrator (6.74 kWp). The tested energy management strategy aims to maximize the consumption of energy generated by a BIPV system through the usage of a battery. Whenever possible, the residual load is either stored in the battery to be used later or is supplied by the energy stored previously. The strategy was tested over seven days in a real-scale VRF battery to assess the validity of this battery to implement BIPV-focused energy management strategies. The results show that it was possible to obtain a self-consumption ratio of 100.0%, and that 75.6% of the energy consumed was provided by PV power. The VRFB was able to perform the strategy, although it was noticed that the available power (either to charge or discharge) varied with the state of charge
    • …
    corecore