824 research outputs found

    Printed circuit board coil design with reduced series resistance for high power inductive wireless power transmission systems

    Get PDF
    Due to the growing use of the popular wireless power transmission (WPT) technology, an innovative method of coil design and optimization is presented in this paper. This method has been applied to develop spiral printed circuit board (PCB) coils with litz-wire structure. From the geometry definition, the design process is carried out by means of finite element analysis (FEA). In addition, as a complement to the design process, some prototypes of spiral PCB coils were built to contrast the simulation results and experimental measurements by means of the small-signal characterization, which reflects the success of the applied method

    Printed circuit board coils of multi-track litz structure for 3.3 kW inductive power transfer system

    Get PDF
    This paper presents the optimization procedure of an inductive power transmission (IPT) system which utilizes large size spiral printed circuit board (PCB) coils for high- power transfer. Printed circuit boards for coil assembly provides advantages in the manufacturing process through the use of cost- effective flexible fabrication techniques. Furthermore, this kind of construction offers a low profile device, which is of great interest for applications with space constraints. PCB-based IPT system coils can achieve high energy efficiency by applying litz-structure braiding techniques, as investigated in this work, where the objective was to obtain an optimized balance between the conduc- tion losses and proximity losses associated with the number and dimensions of the traces. Considering the geometrical dimensions and manufacturing constraints, we will proceed to obtain the characteristics of the coil to achieve optimal performance. The estimation of coil losses were in part based on finite element simulations, and the results were conveniently processed with the appropriate mathematical methods. Numerical simulation and experimental results were conducted for validation on a prototype suitable to transfer up to 3.3 kW for a transmitter- receiver distance of 10 cm. In the experimental arrangement, a maximum efficiency in the coils of 93% has been measured, and the overall efficiency of 88% has been reached for the entire IPT system

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana

    Get PDF
    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin

    Low temperature photoluminescence in ultra-thin germanium quantum wells

    Get PDF
    We measured the photoluminescence (PL) spectra of a series of Gen quantum wells as a function of temperature, from 2K to 50K. The PL spectra at 2.1K are dominated by broad emission lines, which can be interpreted as recombination across the indirect gap of the Si/Ge microstructure and are strongly inuenced by the interface morphology of each sample. Beyond T & 15K, all samples show identical spectra in which the broad structures are replaced by thin, strong lines. We interpret these changes as a quenching of the recpmbination across the gap PL of the microstructure and the appearance of defect-related peaks from the Si substrate

    Foundations of character: methodological aspects of a study of character development in three- to six-year-old children with a focus on sharing behaviours

    Get PDF
    This article focuses on methodological issues arising in a study of character development, using illustrations of ‘sharing behaviours.’ Based primarily in six early years settings in southeast England the research records naturalistic observations of peer interactions for 55 children aged three to six years. Applying grounded theory to the processes of observing, analysing and interpreting evidence required a cautious and collectively reflective approach. The methodology sought to moderate the influence of the researchers' prior knowledge of ‘grand theories’ of moral development and assumptions about relevance to the observation records. The study's originality lay in the exploration of moral development without reference to any particular grand theory as an explanatory framework; and in the reluctance to be drawn to potentially simplistic rationalisations of the children's intentions on the basis of their observed behaviours. Exploring young children's subjective experiences, this research provides insights into the intricacy of this process, steering away from ‘neat’ findings and attempting to reflect the sophistication of the children's skilful and sometimes surprising negotiations of moral dilemmas. Implications for practice relate to the complexities involved in attempts to unravel the developing moral characters of young children and the practice through which this may be nurtured

    Mapping of neurokinin b in the cat brainstem

    Get PDF
    Abstract We studied the distribution of neurokinin B-immunoreactive cell bodies and fibers in the cat brainstem using an indirect immunoperoxidase technique. The highest density of immunoreactive fibers was found in the motor trigeminal nucleus, the laminar and alaminar spinal trigeminal nuclei, the facial nucleus, the marginal nucleus of the brachium conjunctivum, the locus coeruleus, the cuneiform nucleus, the dorsal motor nucleus of the vagus, the postpyramidal nucleus of the raphe, the lateral tegmental field, the Ko¨lliker-Fuse nucleus, the inferior central nucleus, the periaqueductal gray, the nucleus of the solitary tract, and in the inferior vestibular nucleus. Immunoreactive cell bodies containing neurokinin B were observed, for example, in the locus coeruleus, the dorsal motor nucleus of the vagus, the median division of the dorsal nucleus of the raphe, the lateral tegmental field, the pericentral nucleus of the inferior colliculus, the internal division of the lateral reticular nucleus, the inferior central nucleus, the periaqueductal gray, the postpyramidal nucleus of the raphe, and in the medial nucleus of the solitary tract. This widespread distribution of neurokinin B in the cat brainstem suggests that the neuropeptide could be involved in many different physiological functions. In comparison with previous studies carried out in the rat brainstem on the distribution of neurokinin B, our results point to a more widespread distribution of this neuropeptide in the cat brainstem. Keywords Neurokinin B AE Brainstem AE Cat AE Immunocytochemistry AE Mapping AE Tachykini
    corecore