351 research outputs found
Hyperlink Management System and ID Converter System: enabling maintenance-free hyperlinks among major biological databases
Hyperlink Management System (HMS) is a system for automatically updating and maintaining hyperlinks among major public databases in the field of life science. We daily create corresponding tables of data IDs of major databases for human genes and proteins, and provide a CGI-program that returns correct and up-to-date URLs for showing data of various databases that correspond to user-specified IDs. The HMS can deal with various IDs: accession numbers of International Nucleotide Sequence Databases, HUGO Gene Symbols and IDs of UniProt, PDB, H-InvDB and others, and it can return URLs of various databases: H-InvDB, HUGO Gene Nomenclature Committee Database, NCBI Entrez Gene, UniProt, PDB and others. For example, 23 297 pages of Locus view of H-InvDB are reachable by using HUGO Gene Symbols through the HMS. Not only the CGI-program, the HMS provides a Web page for finding and opening URLs of these databases. Although hyperlinking is an effective way of relating biological data among different databases, updating hyperlinks has been a laborious work. The HMS fully automates the job, enabling maintenance-free hyperlinks. We also developed the ID Converter System (ICS) for simply converting data IDs by using corresponding tables in the HMS. The HMS and ICS are freely available at http://biodb.jp/
New perspectives in human stem cell therapeutic research
Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating β islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health
Asian-variant intravascular lymphoma in the African race
Intravascular Large B-cell lymphoma (IVLBCL) is an exceptionally rare form of non-Hodgkin lymphoma (NHL) distinguished by the preferential growth of neoplastic cells within blood vessel lumen. Challenging to detect and deemed disseminated at diagnosis, this condition is characterized by a highly aggressive, inconspicuous course with a high mortality rate. We describe the case of a 48 year-old African-American female presenting with a two month history of low-grade fevers and malaise. Laboratory data was notable for anemia, thrombocytopenia, elevated liver function tests, and hematuria. An extensive work-up for infectious, rheumatologic and malignant causes was negative. Her symptoms progressed and within two weeks, she was admitted for disseminated intravascular coagulation (DIC). Her course was complicated by diffuse pulmonary hemorrhage and ultimately, care was withdrawn. Autopsy identified widespread CD-20 positive intravascular large B-cell lymphoma with significant hepatosplenic involvement, characteristic of the Asian variant IVLBCL. This case uniquely highlights development of the Asian variant IVLBVL in a previously undescribed race. Identified by its intraluminal vascular growth pattern, IVLBCL generally spares lymphatic channels. Diagnosis and differentiation of this condition from other hematological malignancies via skin, visceral and bone marrow biopsy is imperative as anthracycline-containing chemotherapies may significantly improve clinical outcomes. This article outlines the common presentation, natural course, and treatment options of IVLBCL, along with the histopathology, immunohistochemistry, and chromosomal aberrations common to this condition
A Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity
The core planar polarity pathway coordinates epithelial cell polarity during animal development, and loss of its activity gives rise to a range of defects, from aberrant morphogenetic cell movements to failure to correctly orient structures, such as hairs and cilia. The core pathway functions via a mechanism involving segregation of its protein components to opposite cells ends, where they form asymmetric intracellular complexes that couple cell-cell polarity. This segregation is a self-organizing process driven by feedback interactions between the core proteins themselves. Despite intense efforts, the molecular pathways underlying feedback have proven difficult to elucidate using conventional genetic approaches. Here we investigate core protein function during planar polarization of the Drosophila wing by combining quantitative measurements of protein dynamics with loss-of-function genetics, mosaic analysis, and temporal control of gene expression. Focusing on the key core protein Frizzled, we show that its stable junctional localization is promoted by the core proteins Strabismus, Dishevelled, Prickle, and Diego. In particular, we show that the stabilizing function of Prickle on Frizzled requires Prickle activity in neighboring cells. Conversely, Prickle in the same cell has a destabilizing effect on Frizzled. This destabilizing activity is dependent on the presence of Dishevelled and blocked in the absence of Dynamin and Rab5 activity, suggesting an endocytic mechanism. Overall, our approach reveals for the first time essential in vivo stabilizing and destabilizing interactions of the core proteins required for self-organization of planar polarity
Li14Ln5[Si11N19O5]O2F2 with Ln = Ce, Nd-Representatives of a Family of Potential Lithium Ion Conductors
The isotypic layered oxonitridosilicates Li14Ln5[Si11N19O5]O2F2 (Ln = Ce, Nd) have been synthesized using Li as fluxing agent and crystallize in the orthorhombic space group Pmmn (Z = 2, Li14Ce5[Si11N19O5]O2F2: a = 17.178(3), b = 7.6500(15), c = 10.116(2) Å, R1 = 0.0409, wR2 = 0.0896; Li14Nd5 Si11N19O5]O2F2: a = 17.126(2), b = 7.6155 15), c = 10.123(2) Å, R1 = 0.0419, wR2 = 0.0929). The silicate layers consist of dreier and sechser rings interconnected via common corners, yielding an unprecedented silicate substructure. A topostructural analysis indicates possible 1D ion migration pathways between five crystallographic independent Li positions. The specific Li-ionic conductivity and its temperature dependence were determined by impedance spectroscopy as well as DC polarization/depolarization measurements. The ionic conductivity is on the order of 5 ×
10−5 S/cm at 300°C, while the activation energy is 0.69 eV. Further adjustments of the defect chemistry (e.g., through doping)can make these compounds interesting candidates for novel oxonitridosilicate based ion conductors
Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model
ST6GalNAcI is a sialyltransferase responsible for the synthesis of sialyl Tn (sTn) antigen which is expressed in a variety of adenocarcinomas including gastric cancer especially in advanced cases, but the roles of ST6GalNAcI and sTn in cancer progression are largely unknown. We generated sTn-expressing human gastric cancer cells by ectopic expression of ST6GalNAcI to evaluate metastatic ability of these cells and prognostic effect of ST6GalNAcI and sTn in a mouse model, and identified sTn carrier proteins to gain insight into the function of ST6GalNAcI and sTn in gastric cancer progression. A green fluorescent protein-tagged human gastric cancer cell line was transfected with ST6GalNAcI to produce sTn-expressing cells, which were transplanted into nude mice. STn-positive gastric cancer cells showed higher intraperitoneal metastatic ability in comparison with sTn-negative control, resulting in shortened survival time of the mice, which was mitigated by anti-sTn antibody administration. Then, sTn-carrying proteins were immunoprecipitated from culture supernatants and lysates of these cells, and identified MUC1 and CD44 as major sTn carriers. It was confirmed that MUC1 carries sTn also in human advanced gastric cancer tissues. Identification of sTn carrier proteins will help understand mechanisms of metastatic phenotype acquisition of gastric cancer cells by ST6GalNAcI and sTn
- …