90 research outputs found

    Rational design of a peptide capture agent for CXCL8 based on a model of the CXCL8:CXCR1 complex

    Get PDF
    Protein-capture agents are widely used for the detection, immobilization and isolation of proteins and are the foundation for the development of in vitro diagnostic chips. The chemokine CXCL8 is an interesting protein target due to its involvement in the human inflammatory response. We constructed a novel structural model of CXCL8 interaction with its G-protein coupled receptor CXCR1, taking into account previously reported experimental data. From this CXCL8:CXCR1 model complex, the interaction of CXCL8 with residues near the extracellular domains 3 and 4 of CXCR1 were used as a scaffold for the rational design of a peptide capture agent called 'IL8RPLoops'. A molecular dynamics simulation of IL8RPLoops indicates a stable helical conformation consistent with the CXCR1 structure from which it was derived. CXCL8 capture in fluorescence-based assays on beads and on glass demonstrates that IL8RPLoops is an effective capture agent for CXCL8. Additionally, we found IL8RPLoops to be a potent inhibitor of CXCL8-induced neutrophil migration and CXCL8:CXCR1 association. A theoretical binding model for IL8RPLoops:CXCL8 is proposed, which shows the peptide predominantly interacting with CXCL8 via electrostatic contacts with the ELR motif at the CXCL8 N-terminus

    Inactivation of the Neurospora Crassa Gene Encoding the Mitochondrial Protein Import Receptor Mom19 by the Technique of ``sheltered Rip''

    Get PDF
    We have used a technique referred to as ``sheltered RIP'' (repeat induced point mutation) to create mutants of the mom-19 gene of Neurospora crassa, which encodes an import receptor for nuclear encoded mitochondrial precursor proteins. Sheltered RIP permits the isolation of a mutant gene in one nucleus, even if that gene is essential for the survival of the organism, by sheltering the nucleus carrying the mutant gene in a heterokaryon with an unaffected nucleus. Furthermore, the nucleus harboring the RIPed gene contains a selectable marker so that it is possible to shift nuclear ratios in the heterokaryons to a state in which the nucleus containing the RIPed gene predominates in cultures grown under selective conditions. This results in a condition where the target gene product should be present at very suboptimal levels and allows the study of the mutant phenotype. One allele of mom-19 generated by this method contains 44 transitions resulting in 18 amino acid substitutions. When the heterokaryon containing this allele was grown under conditions favoring the RIPed nucleus, no MOM19 protein was detectable in the mitochondria of the strain. Homokaryotic strains containing the RIPed allele exhibit a complex and extremely slow growth phenotype suggesting that the product of the mom-19 gene is important in N. crassa

    Evidence that a 1.6 kilobase region of Neurospora mtDNA was derived by insertion of part of the LaBelle mitochondrial plasmid.

    No full text
    The LaBelle mitochondrial plasmid hybridizes to a small region of the mtDNA of different Neurospora species. Here, we show that the region of homology encompasses 1385 bp of plasmid sequence and 1649 bp of mtDNA sequence. Several findings--that the region of homology is not found in the mtDNAs of other organisms, that it includes the C-terminus of the ORF encoding the plasmid DNA polymerase, and that the ORF sequence in the mtDNA is interrupted by insertions--suggest that the region was part of the plasmid that integrated into mtDNA prior to the divergence of Neurospora species. Since the LaBelle plasmid has been found in only one Neurospora strain, we infer that the plasmid was lost subsequently from most strains. The LaBelle plasmid is transcribed by the host Neurospora mitochondrial RNA polymerase and the major promoter is located upstream of the long ORF, within the region of homology to mtDNA. A promoter used for the transcription of the mitochondrial small rRNA is found at a corresponding position in Neurospora mtDNA and may have been acquired via integration of the plasmid sequence. Our results provide evidence that an autonomous infectious element may contribute to sequences that functionally constitute an organism's mtDNA

    Sequence and structure of the dopa decarboxylase gene of Drosophila: evidence for novel RNA splicing variants.

    No full text
    In Drosophila, dopa decarboxylase (DDC) serves a dual role in neurotransmitter production and sclerotization of the cuticle. The Ddc gene is under complex hormonal and tissue-specific control and several sizes of Ddc RNA are observed at embryonic hatching, pupariation and adult eclosion. We present here the complete nucleotide sequence of the Drosophila dopa decarboxylase gene and the partial sequence of two corresponding Ddc cDNAs. The sequence allows us to account for the detailed structure of four of the five major Ddc RNA species observed. The cDNA sequence reveals the existence of previously undetected splicing events and provides evidence for two RNA splicing alternatives which appear to encode two protein isoforms. The structure, processing and developmental regulation of the Ddc transcripts and putative protein isoforms are discussed. Interestingly, the pyridoxal-binding peptide of porcine DDC matches the Drosophila sequence perfectly suggesting considerable selective pressure on at least portions of the sequence. This is the first available Ddc gene sequence from any organism and should serve as a basis of comparison for the related proteins of other species
    • …
    corecore