89 research outputs found

    Improvement of Total Body Weight Loss in a Comprehensive Weight Loss Program at a Community Gastroenterology Practice with Consistent Support Group Attendance

    Get PDF
    Introduction Obesity-related gastrointestinal disorders, including non-alcoholic fatty liver disease (NAFLD), account for over 30% of visits to GI practices. Total body weight loss (TBWL) of 10% or more is associated with reversal of NAFLD-associated fibrosis and steatosis. Support groups have proven to help individuals recover from other lifestyle diseases. This study assesses the impact of support group attendance on a patient achieving 10% TBWL while enrolled in a community-based weight loss program. Methods Patients participated in a 6-month support group with weekly meetings. TBWL was calculated by taking the difference between the patient’s starting weight and their 6-month weight divided by starting weight. Data was collected retrospectively through chart review. By April 2023, 95 patients completed the support group program. Statistical analysis was performed using ANOVA and Tukey-Kramer post-hoc tests. Results The mean percent weight loss was 6.18% for patients with 0-49% attendance, 8.78% for patients with 50-74% attendance, and 13.24% for patients with 75-100% attendance. The ANOVA test revealed a statistically significant difference in mean percent weight loss across the three groups (F(2,92) = 10.299, p \u3c0.001). The Tukey-Kramer test revealed a statistically significant difference in mean percent weight loss between the 0-49% and 75-100% attendance groups (p\u3c0.001) and between the 50-74% and 75-100% attendance groups (p=0.003). Discussion The results indicate that patients with at least 75% support group attendance reported significantly higher percent weight loss than patients with lower attendance. This study supports the efficacy of support groups toward achieving weight loss

    Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    Get PDF
    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. This paper is a revamping of Modeling multilevel sleep transitional data via Poisson log-linear multilevel models available at: http://www.bepress.com/jhubiostat/paper212

    Impact of Cycle Time on Potential CTS

    Full text link
    Upper limb musculoskeletal symptoms and upper-limb musculoskeletal disorders (MSDs) have been found to be common in the working population. Carpal tunnel syndrome (CTS) is the most commonly studied entrapment neuropathy caused by compression of the median nerve as it passes through the carpal tunnel beneath the flexor retinaculum. The present study is conducted among person engaged in connecting rod manufacturing industry to check effect of cycle time of operation on potential CTS symptoms. The study sample consists of 103 workers for data collection. The study was conducted by questionnaire, physical examination, wrist angle evaluation and on job observation. Correlation analysis and Correlation analysis using IBM SPSS 20, it is revealed that Value of Pearson correlation coefficient is found to be -0.930 which is same as the value calculated manually. So analysis by SPSS 20 also confirms that there is very high negative correlation between cycle time and percentage of CTS sufferers

    Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh

    Get PDF
    For the first time in history outside of Latin America, deadly wheat blast caused by the fungus Magnaporthe oryzae pathotype triticum (MoT) emerged in the 2015–2016 wheat (Triticum aestivum L.) season of Bangladesh. Bangladesh, a country in South Asia, has a population of nearly 160 million, of which 24.3% are classified as poor. Consequently, malnutrition and micronutrient deficiency are highly prevalent, particularly among school going children and lactating women. Bangladesh Wheat and Maize Research Institute (BWMRI), with the technical support of the International Maize and Wheat Improvement Center (CIMMYT), Mexico, has developed and released a new wheat ‘BARI Gom 33’. The new wheat is a zinc-enriched (Zn) biofortified wheat, resistant to the deadly wheat blast disease. ‘BARI Gom 33’ provides 5–8% more yield than the check varieties in Bangladesh. Rapid dissemination of it in Bangladesh, therefore, can not only combat wheat blast but also mitigate the problem of Zn deficiency and ensure income for resource-poor wheat farmers. Importantly, a large portion of the current wheat area in India and Pakistan is vulnerable to wheat blast, due to the similarities of the agro-climatic conditions of Bangladesh. As wheat blast is mainly a seed-borne disease, a rapid scaling out of the new wheat in Bangladesh can reduce the probability of MoT intrusion in India and Pakistan, and thereby generate positive externalities to the food security of more than 1 billion people in South Asia. This study explains the development process of ‘BARI Gom 33’; the status of malnutrition in Bangladesh, and the possible economic gain from a rapid scaling out of ‘BARI Gom 33’ in Bangladesh. A few policies are recommended based on the discussions

    Management of Treatment and Prevention of Acute OP Pesticide Poisoning by Medical Informatics, Telemedicine and Nanomedicine

    Get PDF
    Acute organophosphorous pesticide (OP) poisoning kills a lot of people each year. Treatment of acute OP poisoning is of very difficult task and is a time taking event. Present day informatics methods (telemedicine), bioinformatics methods (data mining, molecular modeling, docking, cheminformatics), and nanotechnology (nanomedicine) should be applied in combination or separately to combat the rise of death rate due to OP poisoning. Use of informatics method such as Java enabled camera mobiles will enable us early detection of insecticidal poisoning. Even the patients who are severely intoxicated (suicidal attempts) can be diagnosed early. Telemedicine can take care for early diagnosis and early treatment. Simultaneously efforts must be taken with regard to nanotechnology to find lesser toxic compounds (use less dose of nanoparticle mediated compounds: nano-malathion) as insecticides and find better efficacy of lesser dose of compounds for treatment (nano-atropine) of OP poisoning. Nano-apitropine (atropine oxide) may be a better choice for OP poisoning treatment as the anticholinergic agent; apitropine and hyoscyamine have exhibited higher binding affinity than atropine sulfate. Synthesis of insecticides (malathion) with an antidote (atropine, apitropine) in nanoscale range will prevent the lethal effect of insecticides

    Mitochondrial Lysyl-tRNA Synthetase Independent Import of tRNA Lysine into Yeast Mitochondria

    Get PDF
    Aminoacyl tRNA synthetases play a central role in protein synthesis by charging tRNAs with amino acids. Yeast mitochondrial lysyl tRNA synthetase (Msk1), in addition to the aminoacylation of mitochondrial tRNA, also functions as a chaperone to facilitate the import of cytosolic lysyl tRNA. In this report, we show that human mitochondrial Kars (lysyl tRNA synthetase) can complement the growth defect associated with the loss of yeast Msk1 and can additionally facilitate the in vitro import of tRNA into mitochondria. Surprisingly, the import of lysyl tRNA can occur independent of Msk1 in vivo. This suggests that an alternative mechanism is present for the import of lysyl tRNA in yeast

    Targeting HER proteins in cancer therapy and the role of the non-target HER3

    Get PDF
    Members of the human epidermal growth factor receptor (HER) family have been of considerable interest in the cancer arena due to their potential to induce tumorigenesis when their signalling functions are deregulated. The constitutive activation of these proteins is seen in a number of different common cancer subtypes, and in particular EGFR and HER2 have become highly pursued targets for anti-cancer drug development. Clinical studies in a number of different cancers known to be driven by EGFR or HER2 show mixed results, and further mechanistic understanding of drug sensitivity and resistance is needed to realise the full potential of this treatment modality. Signalling in trans is a key feature of HER family signalling, and the activation of the PI3K/Akt pathway, so critically important in tumorigenesis, is driven predominantly through phosphorylation in trans of the kinase inactive member HER3. An increasing body of evidence shows that HER3 plays a critical role in EGFR- and HER2-driven tumours. In particular, HER3 lies upstream of a critically important tumorigenic signalling pathway with extensive ability for feedback and cross-talk signalling, and targeting approaches that fail to account for this important trans-target of EGFR and HER2 can be undermined by its resiliency and resourcefulness. Since HER3 is kinase inactive, it is not a direct target of kinase inhibitors and not presently an easily drugable target. This review presents the current evidence highlighting the role of HER3 in tumorigenesis and its role in mediating resistance to inhibitors of EGFR and HER2

    Update on HHV-8-Associated Malignancies

    Get PDF
    The human herpesvirus 8 (HHV-8) is the oncogenic virus associated with Kaposi’s sarcoma (KS) and lymphoproliferative disorders, namely, primary effusion lymphoma and multicentric Castleman’s disease. KS is among the most common malignancies seen in HIV-infected patients despite the decreased incidence of KS in the era of highly active antiretroviral therapy. Advances in molecular pathology reveal HHV-8 tumorigenesis is mediated through molecular mimicry wherein viral-encoded proteins can activate several cellular signaling cascades while evading immune surveillance. This knowledge has led to the evolution of multiple therapeutic strategies against specific molecular targets. Many such therapeutic modalities have shown activity, but none have proven to be curative. Identifying possible prognostic factors is another active area of research. This review summarizes the recent developments in the fields of virus transmission, molecular biology, and treatment of HHV-8-related neoplasms

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
    corecore