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Mixed effect Poisson log-linear models for
clinical and epidemiological sleep hypnogram
data

Bruce J. Swihart*, Brian S. Caffo, Ciprian Crainiceanu, Naresh M. Punjabi

Bayesian Poisson log-linear multilevel models scalable tepidemiological studies are proposed to investigate
population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings
of individuals and repeated measures within those individals, as comparing diseased to non-diseased subjects
while minimizing bias is of importance. Essentially, non-@rametric piecewise constant hazards are estimated
and smoothed, allowing for time-varying covariates and segent of the night comparisons. The Bayesian Poisson
regression is justified through a re-derivation of a classial algebraic likelihood equivalence of Poisson regression
with a log(time) offset and survival regression assuming ggonentially distributed survival times. Such re-derivation
allows synthesis of two methods currently used to analyze esp transition phenomena: stratified multi-state
proportional hazards models and log-linear models with GEEfor transition counts. An example data set from
the Sleep Heart Health Study is analyzed. Copyright© 2010 John Wiley & Sons, Ltd.

Keywords: multi-state models; recurrent event; competing risks,vigat analysis; frailties; sleep;
hypnogram
]

1. Introduction

Hypnograms are time series of an individual’s sleep statas & single night’s sleep. The primary focus of this manpscr

is to describe methods for the analysis of hypnogram dataisfog on methods that scale to large cohort studies and
complex covariance structures. Log-linear random effeati@is can be derived and used to synthesize existing methods
for analyzing hypnogram transition data from large cohtutlies and extended to multilevel settings, unearthing dat
features classical measures bury. In the following seciomotivating discussion of two subjects from a community
based cohort study highlights how classical sleep measuwagsot capture transition and duration in state charatiesi

of the hypnogram, prompting this work to better describermodel the sleep hypnogram.

1.1. Motivating example

Summaries of the measurement of sleep for two subjects wiitimsically different sleep behavior can highlight or rkas
these differences. To illustrate, Subject A of Figdrdas severe sleep-disordered breathing (SDB, discusstteifur
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below), as indicated by a respiratory disturbance indexlRD52.28 events per hour, while Subject B does not (RDI
0.57 events/hour). Each subject was monitored overnigtnglisleep via a polysomnogram for eight hours. The claksica
summary of their sleep stages is similar across the two st#hj8ubject A spent 69%, 16%, and 15% and Subject B
spent 70%, 16%, and 14% of total sleep time in the Non-Rap&l Mgvement (NREM), Rapid Eye Movement (REM)
and Wake states, respectively (Tati)e While overall sleep stage percentages are similar benhilesse two subjects,
the temporal evolution of their sleep may not be. Sleep foindividual is often visualized with hypnograms depicting
states of sleep on the vertical axis and time from sleep arsé#ie horizontal axis. Subjects A and B have similar sleep
stage amounts yet dissimilar hypnograms (see Figureor example, in the zoomed-in portion around hour 7, we see
a critical difference in the duration of REM sleep for eachjsat. Subject A's duration in REM sleep is fragmented,
whereas Subject B’s is non-fragmented. Degree of fragrtientss a feature that overall sleep stage percentages tanno
capture.

Population variations of this phenomenon have been destriore fully elsewherel[ 2]. Despite severe sleep-related
disease, sleep stage percentages remain consistent aighkagon level. Thus any statistical analysis of sleegesta
percentages as a measure of sleep quality may not accouslefp fragmentation, even in extreme comparisons of
severely diseased subjects to healthy ones.

Both scientific and methodological contributions are madhis paper. From a scientific perspective, 1) transitibesra
are developed and substantiated as an informative populatéasure for sleep comparisons, 2) population variations
transition rates for different segments of the night areregul, 3) a very large dataset of sleep hypnograms #&600
subjects is utilized, and 4) bias in our results is reducadwatching. From a methods standpoint, 1) a framework is set
forth to view the sleep of a population of individuals as a tirstiate survival analysis problem with random effects, 2)
a classical algebraic equivalence between survival aisedysl Poisson regression is re-derived and employed vittlein
framework, 3) piecewise constant hazards are smoothed})aaitlof the aforementioned contributions are accomptishe
with relative computational ease for scalability to epidaogical studies.

1.2. Setup and challenges

The sleep transition rate data to be modeled is complex. @poged solution is a multi-state, recurrent event, comget
risk, hierarchical, stratified survival model fit using Pamia hierarchical models. To elaborate, the modehisti-state
because there are more than the traditional 2-statesdfie/dead, wake/sleep, etc.) found in typical survivaldels.
Recurrent evenbecause no state is absorbing and all can r&@ampeting riskbecause options exist for the state to
which one will transition (from Non-REM to either Wake or REMHierarchical because of nesting of times-to-event
within individuals and individuals nested within matcheadrp. Stratifiedin such a way to render transition-type-specific
fixed effects in different segments of the night. Our modetsreecessarily complex to capture the fine structure of the
transition processes that are of interest. Oversimplifioatf data, as shown in our first example, may be misleading in
many applications.

In cohort studies of sleep transitional phenomena, “tima$ Iseveral meanings which can lead to considerable
confusion. Three important distinctions aid in the discus®f time: duration in state (DIS) time, stopwatch accguin
cumulative (SAC) time, and local wall clock (LWC) time. Toueldate, consider an example: a subject falls asleep
when the alarm clock on her night stand displays 10:00PM.d8les through various states of sleep, and at 11:23pm
enters REM sleep. At 11:30pm she exits REM sleep and enteEMNRonsequently, her DIS-time is 7 minutes, which
simultaneously serves as the time-at-risk for lREM— NREMandREM— Waketransition-types. Her SAC-time was 83
minutes when she entered REM, 90 minutes upon exiting. Th€-tMie of her entering into REM was 11:23PM; of her
egress, 11:30PM. The distinction of each of these measutsroétime is important, as DIS-times are the times-to-éven
and SAC-times help in the segmentation of the night whiabwadlfor inference for time-varying transition effects. LWC
time is useful to characterize diurnal effects as they anegaacreasingly recognized to have significance in defitieg
temporal variability in specific outcomes such as suddediaadeath in people with SDB3].
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2. Model and Implementation

An observation model is developed in the most general formtlie Poisson representation of the hypnogram and
implemented with priors via MCMC iVinBUGSto render a posterior likelihood[5]. The representation of a classical
survival likelihood with a piecewise constant hazard by &&mn likelihood is well known in a setting without compefin
risks and recurrent event§,[7, 8]. The pieces of the hazard are the result of applying a bqnscheme on the true
underlying hazard, as in an equally spaced grid or quargflesirvival times, and modeling the hazard as constant over
each bin. With the binning in place, time at risk for a traiositas well as whether a transition occurred within each bin
is tallied. Thus, intuitively, the time-to-event data bews a counting process of 0 events or 1 event occurring with an
offset of the time experienced at risk for the event, withantebin. With multi-state models, there is more than oneidaza
because there is more than one type of transition, and thasteszard is transition-type specific and can have distinct
binning schemes applied. Competing risks and recurrenttgwetroduce considerations on how to tally the number of
transitions and calculate time at risk for those transgiwithin the bins of the transition-type specific scheme. @Getimg
risks will have each observed transition tallied in one birooe hazard yet the time at risk for the transition will be
attributed to each possible transition, binned accordinggich transition-type’s binning scheme. Recurrent everly

that multiple transitions of the same type contribute titaorstallies and time at risk as per binning scheme in antaddi
fashion across the recurrent transition times. Thereforaplti-state model of sleep with competing risks and resmirr
events can be represented as a Poisson model relating thenafmbserved transitions during total time at risk spent i
each bin.

A detailed derivation of the likelihood equivalence is irethppendix. We establish minimal notation to set up an
intuitive derivation based on the classic survival-Paisiikelihood equivalence. For each transition-typallow binning
schemg{gy, } suchthad < ¢n1 < -+ < gnp, to represent the time grid over whi@h, constant pieces;, will model the
underlying log-baseline hazard. The time to transitiontfansition; of individual: is ¢;;. Applying the transition-type-
specific binning scheme tg; requires parsing the time among the bins:

anb — Quv—1y 1 quy < tij
dijnb = tij — qup—1)  1F que—1) <tij < qm
0 if gnp—1) > tij
whereX,d;;n, = t;; for eachh. Risk indicatorr;;,, = 1 denotes ift;; is pertinent as time at risk of a transition-type
for transitionj, andr;;,, = 0 if transition-typeh is not possible as transition With r;;,, = 1, a transition is observed if
yijnp = 1 @and censored if;;,, = 0. Suppressing subscripts, the contribution to a survivgdlikelihood for individuali
with fixed and random effects in linear predictpat transition; of typeh in time binb of By, is

ry(a+n) + exp{a +n + log(rd) }

which is equivalent to a log-likelihood for @~ Poissong) log-linear model withy = exp{a + n + log(d)} and is the
classic survival-Poisson likelihood equivalence where {0, 1}. In our setting of competing risks and recurrent events,
assuming the linear predictgris not dependent op, we can restate the log-likelihood by summing over the inglex
yielding the contribution for an individual transition-typée:, bin b of By,:

n(a+mn) +exp{a+n+log(D)}

wheren € {0,1,...,J;} is the total number of individuals observed transitions of transition-typen bin b of B;, as a
result of being at risk for that transition in that bin forabtlurationD. Of course, the above likelihood is equivalent to a
n ~ Poissong) log-linear model log-likelihood witlp = exp{a + 1 + log(D)}.

The linear predictorn = X;nk + Z;u; contains fixed effectgy of covariatesX; as well as cluster-specific effects

Statist. Med201Q 001-2? Copyright® 2010 John Wiley & Sons, Ltd. www.sim.ordJe]
Prepared usingimauith.cls Hosted by The Berkeley Electronic Press



Statistics
in Medicine B. J. Swihart et al.

to account for hierarchical clustering. The vector= (s;, p;), wheres; is a subject-specific random effect (individual-
level log-frailty) andp; is a pair-specific random effect (pair-level log-frailty)esign matrixZ; is two columns wide
and has the same number of rowsXas one row if all covariates are constant through the nightpaows form total
measurements of a time-varying covariate for the particbia of the likelihood contribution. The time-varying case
involves data augmentation of other parameters and is edverthe appendix. A segmented SAC-time analysis amounts
to completing aforementioned aggregation of transitioenés and time at risk within segments of the night (1st and
2nd half, for example) defined as per individual and modéfixed effects for each segment. Such segmented SAC-time
analysis is a vast improvement over the past raw stratifinapproach of fitting separate models in different portioins
the night p, 1].

For a Bayesian analysis of the model, priors#gg, u;, anday,, of the observation model are selectedi@dsGaussian
distributions, with inverse Gamma hyperpriors for the aade components. Inference was attained via componeat-wis
(as opposed to block-wise) Markov Chain Monte Carlo sangghiVinBUGS[4, 5].

3. Application and Results

The application makes use of hypnogram data from the SleeptHhealth Study (SHHS), a multicenter study on
SDB and cardiac outcome&(]. Subjects for the SHHS were recruited from ongoing cohttlies on respiratory and
cardiovascular disease. From the first SHHS cohort of ov@0 88bjects, 5614 were identified as having reliable and high
quality in-home polysomnograms. To assess the indepemdfects of SDB on sleep structure, a matched subset of the
5614 with and without SDB was selected for the current st@dyjects with severe SDB were identified as those with
a RDI > 30 events/hour. Subjects without SDB were identified asethaigh an RDI< 5 events/hour. Other exclusion
criteria included prevalent cardiovascular disease, tigpsion, chronic obstructive pulmonary disease, astiooranary
heart disease, history of stroke, and current smoking.

Matching is necessary as the data are observational andmepidgic confounding of the disease effect is of concern.
The number of subjects in the SHHS dataset motivating thizusexipt allow for well populated, well selected sub-greup
for the desired comparisons. Propensity score matchingitilgged to balance the groups on demographic factors and to
minimize confounding11]. SDB subjects were matched with no-SDB subjects on thefactf age, BMI, race, and sex.
Race and sex were exactly matched, while age and BMI werehedicsing the nearest neighbor Mahalanobis technique
so that matches had to be within a Mahalanobis distancepéalof 0.10, with multiple matches within the caliper being
settled by random selectiof©]]. The resultant match was 51 pairs that met the strict inafusriteria outlined above and
exhibiting very low standardized biases, a vast improvdrmeihe imbalance of BMI between diseased and non-diseased
groups of past studieg]. Polar opposites of SDB severity, isolated from comoelsitwere used to increase the likelihood
of finding 1) differences in sleep stage percentages (sde Fphnd 2) independent effects of SDB on sleep continuity.

Conceptualizing sleep as a multi-state competing riskeqs®, we focused only on three states of sleep, collapsing th
four stages of non-REM into one state, “NREM?”, leaving thaditional “Wake” and rapid eye movement “REM” states.
From any of the three states one may transition into the stherducing six possible transition types: Wake to NREM
(WN), NREM to Wake (NW), NREM to REM (NR), REM to Wake (RW), REk NREM (RN), and Wake to REM
(WR).

In the context of the applicatiori,= 1, ..., 102 indexes individualj = 1, ...,6 denotes the transition-typé,= 1,2
segments the nightB:, Bz, Bs, B4, Bs, Bs) = (2,6,12,12,12, 1) are the number of bins for each transition-type specific
hazard. TheB,, were determined by the distinct quantiles of the duratiostéte times per transition-tyge Finding By,
was done iteratively, first attempting to have 12 bins withragimately the same number of transitions of typ@ them
for model stability. The number 12 was selected for its v#itsa one pass through the data binning hazards into 12ths
and one could easily construct 12, 6, 4, 3, 2, or 1 piece madgetsmming number of transtions and total duration in state
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time, collapsing 1/12 bins into larger fraction binningthe transition-type: did not yield distinct quanitles for 12 bins,
then bin sizes of 6, 4, 3, 2, and 1 were sequentially tried. guantiles are of times to transition but will be used to bin
time at risk, which implies the final grid point for binningleemes of a competing risk set will need to be the maximum
of the maximum times to transition for each transition-tgh¢éhe competing risk set (Tabl.

The vectony; = (s;, p;), is a vector of additive random effects for subject and paspectively. The vectd; = (1,1)in
models with individuals nested within matched péir,0) for models not accounting for pairs. The vec¥yis composed
of the design variables and (potentially) the demograpbi@dates. The design variables are the 3-way interaction o
disease status, thé" segment of the total SAC-time, and transition-typeThese design interaction variables require
the data to be at the “cross-binned™ h — k — b level and enables the correspondijfig. vector to have elements;;
which quantify the average transition frequency of typia the k** segment of the total SAC-time for diseased versus
non-diseased. In the case Bf= 2, this allows sampling from the posterior distribution oétbomposite quanitity of
the rate ratio between the two segments of niggg%%), enabling inference as to whether transition intensthenge
over the course of sleep. The multiple stratifications onditeon-type, DIS and SAC-time interacted with diseaséusta
can easily make for high dimension parameterizations akagebinning combinations. Following recent research in
smoothing 3, 14], we propose a fine level of binning and allow a smoothingattyrio prevent over-parameterization
via transition-type specific 1st order random walk priorstrategy similar to the correlated pieces approdéh16, 17].

In the smoothing of the piecewise constant hazard across thia priora,., ~ N (unks, 02) is assigned for eachy, s,
whereppiy, = 0if b =1, pnry = aprp—1) if b > 1. Thus, constant pieces from adjacent bins are “similar"acheother.
The 1st order random walk prior just described is refererestte forth as the “smoothed” model. Models with various
combinations of bin smoothing, accounting for pair frailiypd number of included demographic covariates were fitted.
All models were fitted with two segments of total SAC-tin¥€ & 2) and the aforementioned number of biBs. For
each model, we ran five chains for 1200 iterations and uselhsh@00 of each chain, yielding 1000 samples from each
relevant full conditional o3y, u; andayk,. Our hyper-parameter values were selected to favor smialésdut allow
larger values of variances components, with? ~ Gamma(1,.1) having a mean and standard deviation of 19

Upon visual inspection of trace plots, the chains were weéMdeah and the lag auto-correlation was acceptable (see
Appendix). Convergence monitoring was conducted usingBttoeks and Gelman diagnostitd, 19 (acknowledging
the limitations of such convergence diagnostic measufesast majority of these univariate diagnostics are greidtn
but close to 1, suggesting convergence and appropriateldispersed starting values. From graphical inspectidheof
diagnostic over iterations, a vast majority not only nartowl, but also show the stabilization of the pooled and within
interval widths.

All models exhibit SDB subjects transitioning significanthore of typeNREM— Wake in both halves of the night,
Wake — REMIn the first half of the night, and significantly less of tyNREM— REMfor both segments of the night
(Tableb). In other words, given a SDB subject is in NREM, he is morelijikhan a no-SDB subject to transition to Wake
and less likely to transition to REM regardless of how longhhs been asleep. These results elucidate findings of SDB
subjects having higher all cause mortali®g] and increases iINREM- Wake and decreases NREM— REMeading to
higher all cause mortality?[1].

Given a SDB subject is in Wake he is on averag2.6 times as likely as his no-SDB counterpart to transitoREM
in the 1st half of the night. However, there is no significaiffedence between the SDB groups for the WR transition in
the second half of the night. The segmented SAC-time arsabfsihe 2nd half of the night to the 1st shows a reduction
of 60% of the disparity between average transition freqigsnef diseased and non-diseased for type WR (T@pbl€his
suggests the second half of the night has both groups gettiRgEM from Wake at more simliar rates than the first half.

Table5 shows very little difference between models differing oblythe accounting of pairs. In those comparisons,
the magnitudes and directions mirror well, and the onlyedéhce in significant results are due to 95% credible interva
containing 1.00. It appears that in this analysis, the gaiparsimony would favor the omission of pairing information
echoing sentiments of not needing to account explicithypfiring in models that utilized propensity score matchizig.[
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4. Discussion and Conclusion

The transition information of a sleep hypnogram is accadifive by the Poisson model and is eschewed by traditional
sleep percentages, where only percent time in REM diffes&B 17%, no-SDB 21% (Tablg). Showing the derivation
of the Poisson representation provides motivation for & ghithe conceptualization of modeling sleep. The problem
can be thought of as a multi-state, recurrent event, comgeisk, hierarchical, stratified survival model or a Porsso
process with the sufficent statistics of number of transgiarising from time at risk for those transitions. This simékes
concerns about tie handling of DIS-times inconsequeritiaé. ability to piecewise model the hazard, segment the night
and account for transition-type allow for a very flexible rebthat can easily incorporate time-varying covariatese Th
Poisson model iWinBUGSis scalable, with an analysis of 5,614 unpaired individé% SDB) taking five hours. A
comparable multistate survival analysisbhayesX of 3,000 unpaired individuals (11% SDB) produced a consimea
prediction of 14 hours to rurB, 24]. All analyses were conducted with the Windows operatirgemyn GUIs on a laptop
with a 1.83 GHz processor.

Sleep hypnogram data ultimately comprise of six states @richBsition-types. Although three states and six tramgiti
types is a simplification, it is a closer repesentation ofdbepeting risks structure of the data generating process th
a hierarchy of transitions-type&%, 26, 27, 15]. The softwarebayesX and the work on structured additive regression
(STAR) models that has fueled its development accommodai®eple sizes typically generated by a clinical study and
has the capability to fit the Poisson representation of thesatal piecewise exponential survival model or a mutesta
survival model (with time-varying covariates and effed®j, 29, 30, 15. We acknowledge that our formulation of the
Poisson model is a specific instance of a STAR model with degree penalized splines modeling the baseline hazard.
The proposed Poisson implementation of a multistate mofléiis specific instance may be beneficial in analyzing
epidemiological studies because they typically are of gelasample size and have constant subject-level covariates
Clinical studies up to moderate sample sizes with timeingrgovariates are well-suited for STAR modeldayesX .

MCMC allowed us to account for the correlation induced byeatpd measurements on the same individual nested
within matched pairs and would facilitate the examinatidnttee heterogeneity in our population through random
intercepts. Heterogeneity of populations is a very crutaic in epidemiological studies. Through the assumptibn o
exponential survival times we gain a framework that potdiytiallows us to eschew/relax parametric assumptionstabou
the hazard. These reasons plus the eloquence of jointlylmgdke frequency of transitions and times to transitiorkena
the Bayesian Poisson regression framework a powerful axithliéetool in modeling sleep as represented by hypnograms.
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Current state

Subject A Subject B
Previous state N R W N R wW
Non-REM (N) 625 19 21 652 3 18
REM (R) 15 138 4 1 155 4
Wake (W) 24 0 119 19 2 111
Total epochs 664 157 144 672 160 133
Total in hours 554 1.31 1.91 561 133 1.10
Sleep Architecture (%) 69 16 15 70 16 14

Table 1.Cross Tabulation of Pairwise Contiguous Epochs for Subjaand B.

Subject A
; - - -
o |
=z- L L]
[0} 1 2 3 4 5 6 7 8
Subject B
; - -
m -
= |
[0} 1 2 3 4 5 6 7 8
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; _
m -
=
6.75 7 7.25
Subject B
; - - -
m -
Z L
6.75 7 7.25

Figure 1. Left panels, 8 hour sleep hypnograms of Subjects A and B;tRighels, zoomed half-hour portions of the correspondifigonel. On all hypnograms, the vertical axis
represents the states of sleep (N: Non-REM, R: REM, and W:e)Valsubject can occupy. The horizontal axis is time of nigfith O being sleep onset, thus a hypnogram is a

state-time graph, showing the trajectory of sleep for aividdal.
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Figure 2. A sample hypnogram of three state sleep over 9 hours frorp skeget, illustrating binning for the 2nd bin of of the hazafdransition-type NR, as well as (potentially)
a K = 2 analysis where SAC-time less than 4.5 hours is segient1 and greater than 4.5 hours is segmient 2. No time is spent in REM and each DIS-time is 60 minutes
long. The different data formats of this graphic are in Téble

Survival format Poisson format (K=1) Poisson format (K=2)

j type h t r vy type h k b n D type h k b n D

1 WN 1 60 1 1] WN 1 1 1 0 75/ WN 1 1 1 0 30
1 WR 6 60 1 O] WN 1 1 2 4 225\ WN 1 1 2 2 90
2 NW 2 60 1 1| WR 6 1 1 0 300 WR 6 1 1 0 120
2 NR 3 60 1 Of NW 2 1 1 0 200 N\W 2 1 1 0 10
3 WN 1 60 1 1 NW 2 1 2 0 2000 N\W 2 1 2 0 100
3 WR 6 60 1 O NW 2 1 3 4 200 N\W 2 1 3 2 10
4 NW 2 60 1 1] NR 3 1 1 0 8| NR 3 1 1 0 40
4 NR 3 60 1 O] NR 3 1 2 0 8| NR 3 1 2 0 40
5 WN 1 60 1 1] NR 3 1 3 0 8| NR 3 1 3 0 40
5 WR 6 60 1 O WN 1 2 1 0 45
6 NW 2 60 1 1 WN 1 2 2 2 135
6 NR 3 60 1 O WR 6 2 1 0 180
7 WN 1 60 1 1 NW 2 2 1 0 10
7 WR 6 60 1 O NW 2 2 2 0 100
8 NW 2 60 1 1 NW 2 2 3 2 10
8 NR 3 60 1 O NR 3 2 1 0 40
9 WN 1 60 1 O NR 3 2 2 0 40
9 WR 6 60 1 O NR 3 2 3 0 40

Table 2.(Accompanies Figur@): Multistate survival data of times-to-transitiann minutes represented as a Poisson
process withoutK = 1) and with(K = 2) SAC-time segmenting. The Poisson formats assume binnimenses{ ¢, }:
for WN {q1,} = (0, 15,60), for WR {gey} = (0, 60), for NW {g21} = (0, 5,55, 60), for NR {¢s5} = (0, 20,40, 60). All
duration in state times are 60 minutes and no time is spenEM Rherefore transition-types RW and RN are not possible
(Figure2). The total time spent in NREM is 240 minutes, which implieatt240 minutes were simultaneously the total
time at risk for NW and NR transitions. Each transition-tyyaes a different binning scheme, thus when survival data is
converted to unsegmentel (= 1) Poisson data, the 240 minutes are parsed differently: Yy three bins of dissimilar
sizes, and for NR three bins of equal sizes. For fie<{ 2) Poisson data, the times and transitions are aggregathohwit
each segment, thus the 240 minutes in NREM gets split intardipOtes ink = 1 and 120 minutes spent in= 2. Once
appropriated to the correct segment, the binning schemepised. For binb = 2 of the NR binning scheme, transition
tallies and time at risk between 20 and 40 minutes are sumwexdtoe duration in state times. No transitions happen in
the four durations, so O tallies are recorded and 80 minataktime at risk are attributed to bin= 2 of the hazard of NR
of the unsegmented Poisson model. Note the last transjtiend) is censored, so there is no transition tally contributed,
but time at risk is. Also note that the transition from WakeNBEM that crosses the segmenting line at SAC-time 4.5
hours is attributed in total to segment-£ 2) because the transition took place in segnieat 2.

Statist. Med201Q 001-2? Copyright® 2010 John Wiley & Sons, Ltd. wwaw.sim.ordfe]
Prepared usingimauith.cls Hosted by The Berkeley Electronic Press



Statistics
in Medicine B. J. Swihart et al.

Variable SDB no-SDB  p-value
RDI ( events/hour) 40.532 2.114  0.000
BMI ( kg/m?) 30.275 30.247 0.972
Age (years) 61.804 61.804  1.000
Race (% white) 92.160 92.160 1.000
Sex (% male) 66.667 66.667  1.000
Total Sleep Time (  min.) 351.397 357.466  0.593
% Total Sleep Time asleep 81941  83.364  0.743
% Night in Stage 1 5.750 5,577 0.815
% Night in Stage 2 62.693 59.109 0.121
% Night in Stage 3 or 4 13.647  13.908 0.904
% Night in REM 17.909  21.406  0.002

Table 3.Demographic Covariates and Sleep Variables, means of thegtaups. All measures are not significantly
different except for % Night in REM (RDI is different by desig

Type B, Scheme Binning Grid
qno dn1 qn2 qn3 dh4 qnh5 qn6 qn7 qnh8 qn9 dh10 dh11 qh12
WR 1 {qev} 0.0 *317.0
WN 2 {q1p} 0.0 05 3170
NW 6 {q2v} 0.0 0.5 15 35 75 185 *163.5
NR 12 {qav} 0.0 0.5 1.0 15 20 3.0 45 6.0 85 140 255 415 1635
RN 12 {qap} 0.0 1.0 15 25 30 4.5 55 7.0 85 11.0 140 195 *77.5
RW 12 {g5p} 0.0 0.5 10 15 25 35 50 70 100 135 180 25.0 77.5

Table 4.Transition-type specific binning schemes, (in minutes)e istinct quantiles are calculated on the times to
transition, not the time at risk. This nuance has impligaifor the final grid point, where the maximum grid point for
transition-type specific binning schemes of the same camgpeisk set will be the maximum time to transition of the
competing risk set, not necessarily the maximum time tcsitim for the transition-type. Therefore, the asterishates
where this substitution is made; the actual maximum timestosition follows accordingly:
*317.0=166.0, *163.5=140, *77.5=62.5
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Model Rate Ratios by Transition Type h
Pair No. Night
Smoothed Frailty Covariates Segment WN NW NR RW RN WR
Yes Yes 4 1 0.991.121.98 1.101.251.42 0.560-720.92 1.021.321.73 0.670.931.24 1.572.664.95
2 10.870.981.11 1.111.261.42 0.540.660.81 0.871.071.31 0.740.981.3 0.781.011.32
Yes Yes 2 1 0.991.121.29 1.101.261.43 0.550.710.92 1.011.311.72 0.670.901.23 1.592.694.55
2 10.870.981.10 1.111.271.43 0.530.660.81 0.871.081.33 0.761.001.31 0.781.031.38
Yes  Yes 0 1 j100l131.27 1.111.271.43 0.560.730.93 0.981.301.70 0.700.931.29 1.572.654.36
2 0.880.981.11 1.121.271.43 0.530.660.81 0.891.081.31 0.750.991.32 0.771.031.36
Yes No 0 1 Jo.971.121.29 1.101.241.30 0.550.710.91 1.001.311.69 0.670.911.26 1.622.714.43
2 10.860.971.09 1.101.251.41 0.530.660 .82 0.881.071.28 0.750.981.28 0.781.021.35
No No 0 1 o.981.121.26 1.071.221.39 0.530.680.86 0.961.251.61 0.640.871.14 1.572.564.42
2 10.850.961.09 1.101.241.42 0.500.630.78 0.871.051.29 0.720.951.25 0.771.011.33
No Yes 0 1 Jo.osl.111.26 1.001.241.40 0.530.680.87 0.981.251.66 0.650.871.18 1.512.484.24
2 0.860.971.10 1.101.261.41 0.510.640.81 0.861.051.29 0.720.951.24 0.761.011.32

Table 5.Rate Ratios for SDB vs. no-SDB by Transition Type. Blue iatkés diseased transition significantly more than

non-diseased. Red indicates diseased transition sigmifidass than non-diseased. The tables are in a format vthere

elements are the triplet with credible intervals as the deid right subscripts and the center number as the rate ratio
estimate 31].

Model Relative Rate Ratios
Pair No. of segment 2 vs segment 1 by Transition Type h
Smoothed Frailty Covariates WN NW NR RW RN WR

Yes Yes 4 0.750.871.01 0.570.821.15 0.871.011.18 0.721.081.64 0.660-921.24 0.200.400.71
Yes Yes 2 0.750.871.02 0.590-841.14 0.861.011.18 0.741.141.72 0.690.941.27 0.210.400.72
Yes ES 0 0.750.871.01 0.620-841.14 0.861.011.18 0.701.081.59 0.670.921.24 0.220.41¢.70
Yes No 0 0.750.871.02 0.600.821.11 0.861.011.18 0.711.101.62 0.680.941.28 0.210.390.64
No No 0 0.740.861.00 0.610.851.12 0.861.021.19 0.731.111.64 0.670.941.29 0.220.410.67
No iYeg 0 0.750.881.02 0.610-851.15 0.871.021.19 0.741.111.66 0.670.961.33 0.230.430.69

Table 6.Comparisons of beta coefficients, 2nd segment of night toségiment. Blue indicates the relative rate of

2nd segment of night for diseased transitioning comparataamon-diseased is significantly more than that of the 1st

segment. Red indicates the relative rate of 2nd segmenghbf for diseased transitioning compared to the non-disease

is significantly less than that of the 1st segment. The tedrle# a format where the elements are the triplet with cfedib
intervals as the left and right subscripts and the centerbeumas the relative rate ratio estimadé][
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Appendix: Likelihood equivalence with SAC-time constamadates

For each transition-type = 1, ..., i allow binning scheméggy,; } such thad < gu1 < --- < qnp,,, to represent the time
grid over whichB;, constant pieces, will model the underlying log baseline hazard within thersegtk = 1,..., K
of SAC-time. For transitioy = 1,..., J; of individuali = 1, ..., I the time to transition ig;;. Applying the transition-
type-specific binning scheme tg requires parsing the DIS-time among the bins on the hazatdnthe segment of
SAC-time:

anb = qno—1) 1f gy < tij

dijhib = § tij — qno—1) 1 qh—1) < tij < qno
0 if gnp—1) > ti

whereX,d; ke = ti; for eachh for the transition; that takes place in segmeht Risk indicatorr; .., = 1 denotes if
dijniy 1S pertinent as time at risk of a transition-typdor transition; in segment, andr;;x., = 0 if transition-typen

is not possible as transition With r;;,., = 1, a transition is observed if;;.., = 1 and censored if;;n, = 0. In the
case of SAC-time constant covariates, row ve@gicontains the values of the covariates and column vegiprare the
fixed effects of those covariates. The column veeipe (s;, p;) accounts for within-subject and within-pair correlation,
respectively. Design row vect@; = (1, 1) for models accounting for pairin@,; = (1, 0) for ignoring pairing. Note that
the definition of “segment” of total SAC-time is subject-sfiie and “ragged” in a sense. Ift; started in segmerit — 1

and ends in segmeht it is assigned in its entirety to segmeéniWith that stated, the segmenting of SAC-time supersedes
binning the DIS-time: total SAC-time is divided into K segnte (i.e. K=2 implies 1st half and 2nd half of night) on
an individual basis. Then the DIS-times are assigned irr gdirety to one of the segments. Then the DIS-times are
partitioned among the= 1, ..., By, bins within the segment of SAC-time.

Now, the established relation between survival data andPiieson likelihood will be reanimated in the outlined
framework B, 7, 8]. Let the hazard for transition-typé, segmentk and bin b be Ay (dijhes | %i,2i, w;) =
Nonkb (dijhgp ) eXiPretzitt,
The hazard is defined as

Tniv(dijnre; Xi, 2i, ;) Tniv(dijhre; Xi, 2i, ;)
Ankb(dijnk | Xis Zi, u5) = =
(dighis | %3, 23, ui) Shib(dijhry; Xi, 20, W) 1 — Fruy(dijhie; Xi, 26, u;)

wherefriy (dijhin: Xi, 2i, Wi), Shks (dijhik; Xi, 26, W;), andFrey (dijnrs; Xi, 2, ;) are the density, survivor, and distribution
functions associated with the survival (DIS) times. Supgirgg subscripts for the three most recently mentionediesti
the conditional likelihood is:

o}
>
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Consider the instance whetg Aonks (dijnks) = anks; hence the strata-specific hazard does not depend ondjmg|
and thusf is the exponential density. Utilizing (d;jnip; xi, 2, u;) = exp{j’odijhkb Ankb (85 X5, 25, u;)dt }, the conditional
likelihood simplifies to

[T

i=1j=1h=1k=1

iihkbTijhk Ahkb+Tijhk kT ZijnkpWi
{eXp(OéhkbJFXiﬂILkJFZiui)}y”hkb ijhkb eXp{*Tijhkbdijhkbe hkb uhkbﬁhk ijhkb }
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Taking the log and summing over

By,

I H K
g g E > ninkn (Qhik + Xi Bk + zi;) — ek Pxiduntaitios(Dine) (2)

1b=1

Noting the general form of the log likelihood far~ Poissong) is proportional tawlog(¢) — ¢, (2) could arise from a
Poisson log-linear model with = exp{anis + XiOni + ziw; + log(Dinkp) . Formally written, the conditional model is:

H apkb+XiBrrt+ziu;+log(D;n
Ninkb | Qhikbs Xis Buk, Zi Wi, Dingy ~ POiSSOfie®ko il g(Dinks))

Above,n;nip IS the count of the number of observed transitions commidttethg D; x5, the total time at risk for persan
committing a transition of typ#, occuring in segmerit and binb. Accounting forD;;; is crucial when modeling relative
counts, for if a subject makes twice as many transitions athan but had twice as long to do so the rate of transitioning
is not truly elevated. IB;, = 1, Vh and K = 1 then @) is equivalent to an exponential survival model. Bg — oo, the
model approaches having a completely non-parametric\iseeonstant hazard for transition-type

Appendix: Likelihood equivalence with SAC-time-varyingariates

Figure 3. The sample hypnogram of three state sleep (as in Figaral Table?) over hours from sleep onset, superimposed on a SAC-timgrgacovariate. Binning for the 2nd
bin of the hazard of transition-type NR is illustrated, adlase (potentially) ak’ = 2 analysis where SAC-time less than 4.5 hours is segient1 and greater than 4.5 hours is
segmentk = 2. With SAC-time-varying covariatesy; in the likelihood becomes a matrix comprised of stacked reetars of values occurring in a particular Bimnd segment
k.

As Figure3 implies, SAC-time-varying covariates will necessitateéadaugmentation for th@/ measurements taking
place in binb and segment, whereM is the total number of epochs (the finest and uniform time fyidall subjects)
taking place in birb and segment of the SAC-time. ThenX; of the previous section is a matrix of rows,,, and the
likelihood is:

H K
: imBrk+ziu;+log(Dink
E g g g E ik (Qhkb + Xim Ok + 2i0;) — e@rretXimBritzititlog(Dinks) (3)

i=1 h=1 k=1 b=1 m=1
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Appendix: Subset of Chains from MCMC Sampling

Time series
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Figure 4. Each plot is 5 chains of a component draw. Each chain is 120@lsa long with a burn-in of 1000 used for each chain. Fromppel to bottom, the chains of fixed
effectbetal2] = 21, individual log-frailty u[2] = s; = s2, mu[2] = apky, = @112 andcompare[2] = exp(B22)/ exp(B21), respectively.
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