10 research outputs found

    Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context

    Get PDF
    Visual motion detection is essential for the survival of many species. The phenomenon includes several spatial properties, not fully understood at the level of a neural circuit. This paper proposes a computational model of a visual motion detector that integrates direction and orientation selectivity features. A recent experiment in the Drosophila model highlights that stimulus orientation influences the neural response of direction cells. However, this interaction and the significance at the behavioral level are currently unknown. As such, another objective of this article is to study the effect of merging these two visual processes when contextualized in a neuro-robotic model and an operant conditioning procedure. In this work, the learning task was solved using an artificial spiking neural network, acting as the brain controller for virtual and physical robots, showing a behavior modulation from the integration of both visual processes

    Embodied Working Memory During Ongoing Input Streams

    No full text
    Introducing a network of spiking neurons with adaptive-exponential integrate-and-fire units. The formal model combines short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). A keyboard listener is devised, where users can control, on-the-fly, the duration and configuration of inputs presented to the network. The script runs in an online fashion, originally designed for robotic implementations

    Discrimination of Motion Direction in a Robot Using a Phenomenological Model of Synaptic Plasticity

    No full text
    Recognizing and tracking the direction of moving stimuli is crucial to the control of much animal behaviour. In this study, we examine whether a bio-inspired model of synaptic plasticity implemented in a robotic agent may allow the discrimination of motion direction of real-world stimuli. Starting with a well-established model of short-term synaptic plasticity (STP), we develop a microcircuit motif of spiking neurons capable of exhibiting preferential and nonpreferential responses to changes in the direction of an orientation stimulus in motion. While the robotic agent processes sensory inputs, the STP mechanism introduces direction-dependent changes in the synaptic connections of the microcircuit, resulting in a population of units that exhibit a typical cortical response property observed in primary visual cortex (V1), namely, direction selectivity. Visually evoked responses from the model are then compared to those observed in multielectrode recordings from V1 in anesthetized macaque monkeys, while sinusoidal gratings are displayed on a screen. Overall, the model highlights the role of STP as a complementary mechanism in explaining the direction selectivity and applies these insights in a physical robot as a method for validating important response characteristics observed in experimental data from V1, namely, direction selectivity

    Embodied working memory during ongoing input streams.

    No full text
    Sensory stimuli endow animals with the ability to generate an internal representation. This representation can be maintained for a certain duration in the absence of previously elicited inputs. The reliance on an internal representation rather than purely on the basis of external stimuli is a hallmark feature of higher-order functions such as working memory. Patterns of neural activity produced in response to sensory inputs can continue long after the disappearance of previous inputs. Experimental and theoretical studies have largely invested in understanding how animals faithfully maintain sensory representations during ongoing reverberations of neural activity. However, these studies have focused on preassigned protocols of stimulus presentation, leaving out by default the possibility of exploring how the content of working memory interacts with ongoing input streams. Here, we study working memory using a network of spiking neurons with dynamic synapses subject to short-term and long-term synaptic plasticity. The formal model is embodied in a physical robot as a companion approach under which neuronal activity is directly linked to motor output. The artificial agent is used as a methodological tool for studying the formation of working memory capacity. To this end, we devise a keyboard listening framework to delineate the context under which working memory content is (1) refined, (2) overwritten or (3) resisted by ongoing new input streams. Ultimately, this study takes a neurorobotic perspective to resurface the long-standing implication of working memory in flexible cognition

    The brain and its time: intrinsic neural timescales are key for input processing

    Get PDF
    We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs\u2019 stochastics with the ongoing temporal statistics of the brain\u2019s neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence
    corecore