23 research outputs found
Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions
The aim of the present study was to assess the effects of plantar-flexor
muscles fatigue on postural control during quiet standing under normal, altered
and improved vestibular and neck somatosensory conditions. To address this
objective, young male university students were asked to stand upright as still
as possible with their eyes closed in two conditions of No Fatigue and Fatigue
of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was
executed in two Neutral head and Head tilted backward postures, recognized to
degrade vestibular and neck somatosensory information. In Experiment 2 (n=15),
the postural task was executed in two conditions of No tactile and Tactile
stimulation of the neck provided by the application of strips of adhesive
bandage to the skin over and around the neck. Centre of foot pressure
displacements were recorded using a force platform. Results showed that (1) the
Fatigue condition yielded increased CoP displacements relative to the No
Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing
effect was more accentuated in the Head tilted backward posture than Neutral
head posture (Experiment 1) and (3) this destabilizing effect was less
accentuated in the condition of Tactile stimulation than that of No tactile
stimulation of the neck (Experiment 2). In the context of the multisensory
control of balance, these results suggest an increased reliance on vestibular
and neck somatosensory information for controlling posture during quiet
standing in condition of altered ankle neuromuscular function
The gait and balance of patients with diabetes can be improved: a randomised controlled trial
Item does not contain fulltextAIMS/HYPOTHESIS: Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. METHODS: This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. RESULTS: The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. CONCLUSIONS/INTERPRETATION: Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT00637546 FUNDING: This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/1 maart 201
Functional Changes in Muscle Afferent Neurones in an Osteoarthritis Model: Implications for Impaired Proprioceptive Performance
Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones.Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naĂŻve control rats stood with less weight on the ipsilateral hind leg (Pâ=â0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (Pâ=â0.006), slower rise time (Pâ=â0.001) and slower maximum rising rate (Pâ=â0.03). Depolarizing intracellular current injection elicited more APs in models than in naĂŻve muscle afferent neurones (Pâ=â0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (Pâ=â0.04).The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (Nâ=â1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk