3,208 research outputs found
Leptogenesis, Z' bosons, and the reheating temperature of the Universe
We study the impact for leptogenesis of new U(1) gauge bosons coupled to the
heavy Majorana neutrinos. They can significantly enhance the efficiency of
thermal scenarios in the weak washout regime as long as the Z' masses are not
much larger than the reheating temperature (), with the
highest efficiencies obtained for Z' bosons considerably heavier than the heavy
neutrinos (). We show how the allowed region of the parameter
space is modified in the presence of a Z' and we also obtain the minimum
reheating temperature that is required for these models to be successful.Comment: 14 pages, 6 figures; One figure added, discussion on the reheating
temperature extende
Charge state of C10 and C5 energetic cluster ions in amorphous carbon targets: simulations
We present here detailed simulations of the interaction of energetic C10 and C5 clusters at the energies of 1, 2, and 4 MeV per carbon atom with an amorphous carbon target. The spatial evolution of the cluster components is simulated accounting for both scattering and Coulomb explosion. The former is calculated by means of the Monte Carlo method while the latter is computed by means of molecular dynamics. The charge state of the individual cluster components is calculated as a function of penetration depth, and is determined by the competition between electron ionization and recombination. The results of calculations of the effect of the neighbouring cluster components on the suppression of the values of the charge state are presented and compared to the experimental values of Brunelle et al. Charge state suppression calculations for the 2 MeV/C clusters for both C10 and C5 agree well with the experimental results for penetration depths of less than about 500 and 250 Å respectively, assuming the intracluster Coulomb potential is screened by four target valence electrons. At 4 MeV/C the results are similar although less screening is required; a possible explanation is the inability of the plasma to completely screen the higher velocity projectiles. The 1 MeV/C calculated results however differ in their behaviour from the 2 and 4 MeV/C cases
Identifying Unconventional E Models at Colliders
Recently it was shown that, in the framework of superstring inspired \E
models, the presence of generation dependent discrete symmetries allows us to
construct a phenomenologically viable class of models in which the three
generations of fermions do not have the same embedding within the fundamental
{\bf 27} dimensional representation of E. In this scenario, these different
embeddings of the conventional fermions imply that the left-handed charged
leptons and the right-handed -type quarks are coupled in a non--universal
way to the new neutral gauge bosons present in these models. It
was also shown that a unique signature for this scenario, would be a deviation
from unity for the ratio of cross sections for the production of two different
lepton species in annihilation. However, several different scenarios
are possible, depending on the particular assignment chosen for ,
and and for the right-handed -type quarks, as well as on the type
of boson. Such scenarios can not be disentangled from one another by
means of cross section measurements alone. In this paper we examine the
possibility of identifying the pattern of embeddings through measurements of
polarized and unpolarized asymmetries for fermion pair-production at the 500
GeV Next Linear Collider (NLC). We show that it will be possible to
identify the different patterns of unconventional assignments for the
left-handed leptons and for the quark, for masses as large as
TeV.Comment: Plain Tex, 15 pages, + 9 figure available upon request
([email protected] or [email protected]), UM-TH 93--1
Supersymmetric Leptogenesis
We study leptogenesis in the supersymmetric standard model plus the seesaw.
We identify important qualitative differences that characterize supersymmetric
leptogenesis with respect to the non-supersymmetric case. The lepton number
asymmetries in fermions and scalars do not equilibrate, and are related via a
non-vanishing gaugino chemical potential. Due to the presence of new anomalous
symmetries, electroweak sphalerons couple to winos and higgsinos, and QCD
sphalerons couple to gluinos, thus modifying the corresponding chemical
equilibrium conditions. A new constraint on particles chemical potentials
corresponding to an exactly conserved -charge, that also involves the number
density asymmetry of the heavy sneutrinos, appears. These new ingredients
determine the matrices that mix up the density asymmetries of the
lepton flavours and of the heavy sneutrinos. We explain why in all temperature
ranges the particle thermodynamic system is characterized by the same number of
independent quantities. Numerical differences with respect to usual treatment
remain at the level.Comment: 30 pages, 2 figures. Typos corrected, one reference added. Version
published in JCA
On fast CP violating interactions in leptogenesis
We show that when the relevant CP violating interactions in leptogenesis are
fast, the different matter density asymmetries are determined at each instant
by a balance condition between the amount of asymmetry being created and
destroyed. This fact allows to understand in a simple way many features of
leptogenesis in the strong washout regime. In particular, we find some
non-trivial effects of flavour changing interactions that conserve lepton
number, which are specially relevant in models for leptogenesis that rely
heavily on flavour effects.Comment: V2: To match published version in JCAP. Minor changes, including one
figure, with respect to V1. 17 pages, 4 figure
Simulation of the channelling of ions from MeV C60 in crystalline solids
Simulations were performed describing the motion and breakup of energetic C60 ions interacting with crystalline targets. A hybrid algorithm was used that employs a binary collision model for the scattering of the carbon ions by the atoms of the solid, and molecular dynamics for the Coulomb interactions of the 60 carbon ions with one another. For the case of yttrium iron garnet (YIG), directions such as [1 1 0], [1 0 0], [0 1 0] and [0 0 1] demonstrate channelling for a large fraction of the C ions. For directions such as [1 1 1], [2 1 1] and [7 5 3] the trajectories show no more channelling than for random directions. The effects of tilt, shielding and wake-field interactions were investigated for YIG and α-quartz
Simulation of the interaction of high-energy C60 cluster ions with amorphous targets
Detailed simulations of the interaction of energetic C-60 beams with amorphous targets are presented here. The spatial evolution of the cluster components is calculated accounting for multiple scattering and Coulomb explosion by means of Monte Carlo and molecular dynamics, respectively. The charge states of the individual cluster components (atoms, atomic ions, fragment cluster ions) as a function of penetration depth are also calculated in tandem with the above calculations by means of the Monte Carlo method. The relative importance of scattering versus Coulomb repulsion is studied as a function of the C-60 cluster energy. The effect of the neighboring cluster constituents on the average charge state of the cluster atoms is calculated as a function of the depth of penetration for a C-60 cluster of 40 MeV. The calculation accounts for the increase in ionization energy of the atom due to the other constituents. Relative track radii are calculated as a function of penetration depth and good agreement with the experimental results is obtained for the interaction of a 30 MeV carbon cluster with silicon. Track splitting observed well into the target as measured by Dunlop in yttrium iron garnet is obtained in the simulations described here for the case of amorphous carbon, provided the Coulomb repulsion is screened by the four valence electrons. Collective energy deposition enhancement is calculated for the 720 MeV cluster. Here the cluster constituents are nearly fully ionized, thereby minimizing the ambiguity related to the value of the ionic charge in the calculation
Thermally induced behavior of the K-exchanged erionite. A further step in understanding the structural modifications of the erionite group upon heating
Fibrous erionite is a naturally occurring zeolite considered to be highly carcinogenic upon inhalation, even more than crocidolite. Since no iron is typically present in erionite, its toxicity has been attributed to ion-exchanged Fe participating in Fenton chemistry. Recently, a study aimed at investigating possible fiber inactivation routes surprisingly showed that, despite having completely occluded all available pores with K ions, the erionite-Na sample preserved the property to upload Fe (II) within the structure. In this work, the thermal behavior of the K-exchanged erionite-Na was investigated by TG/ DSC and in situ XRPD analyses in order to provide relevant information for modeling the thermally induced behavior of the erionite group. Rietveld refinement results evidenced a general trend of cell parameters and volume with temperature similar to that observed for erionite-K from Rome (Oregon, USA). However, the dependence of Tdehydrand Tbreakfrom Si/Si+Al ratio observed in zeolites (high Si content favours a lower Tdehydrand a higher Tbreak) is not observed, possibly due to the effect of the relevant amount of large K ions dispersed within the erionite cage, acting as reinforcing blocks for the framework. Heating produces a progressive emptying of the Ca sites, common effect previously observed in erionite samples showing different chemistry. In addition, K1 s.s. remains unchanged evidencing the absence of any “internal ion exchange” process, whereas s.s. at K2 increases in the range 438-573 K and then slowly decreases in the range 700-1218 K. Both Rietveld and DSC data suggest the motion of K ions from OW sites toward the walls of the erionite cavity during dehydration
Leptogenesis without violation of B-L
We study the possibility of generating the observed baryon asymmetry via
leptogenesis in the decay of heavy Standard Model singlet fermions which carry
lepton number, in a framework without Majorana masses above the electroweak
scale. Such scenario does not contain any source of total lepton number
violation besides the Standard Model sphalerons, and the baryon asymmetry is
generated by the interplay of lepton flavour effects and the sphaleron
decoupling in the decay epoch.Comment: V2 (published version): 21 pages, 4 figures. Some explanations have
been adde
CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis
We obtain the Boltzmann equations for leptogenesis including decay and
scattering processes with two and three body initial or final states. We
present an explicit computation of the CP violating scattering asymmetries. We
analyze their possible impact in leptogenesis, and we discuss the validity of
their approximate expressions in terms of the decay asymmetry. In scenarios in
which the initial heavy neutrino density vanishes, the inclusion of CP
asymmetries in scatterings can enforce a cancellation between the lepton
asymmetry generated at early times and the asymmetry produced at later times.
We argue that a sizeable amount of washout is crucial for spoiling this
cancellation, and we show that in the regimes in which the washouts are
particularly weak, the inclusion of CP violation in scatterings yields a
reduction in the final value of the lepton asymmetry. In the strong washout
regimes the inclusion of CP violation in scatterings still leads to a
significant enhancement of the lepton asymmetry at high temperatures; however,
due to the independence from the early conditions that is characteristic of
these regimes, the final value of the lepton asymmetry remains approximately
unchanged.Comment: 24 pages, 6 figures. One appendix added. Some numerical results and
corresponding figures (mainly fig. 3) corrected. Final version to be
published in JHE
- …