65 research outputs found
New-HOPLA--A Higher-Order Process Language with Name Generation
This paper introduces new-HOPLA, a concise but powerful language for higher-order nondeterministic processes with name generation. Its origins as a metalanguage for domain theory are sketched but for the most part the paper concentrates on its operational semantics. The language is typed, the type of a process describing the shape of the computation paths it can perform. Its transition semantics, bisimulation, congruence properties and expressive power are explored. Encodings are given of well-known process algebras, including pi-calculus, Higher-Order pi-calculus and Mobile Ambients
On Julia\u27s Efficient Algorithm for Subtyping Union Types and Covariant Tuples (Artifact)
This is the artifact for the pearl paper "On Julia\u27s efficient algorithm for subtyping union types and covariant tuples.
KafKa: Gradual Typing for Objects
A wide range of gradual type systems have been proposed, providing many languages with the ability to mix typed and untyped code. However, hiding under language details, these gradual type systems embody fundamentally different ideas of what it means to be well-typed. In this paper, we show that four of the most common gradual type systems provide distinct guarantees, and we give a formal framework for comparing gradual type systems for object-oriented languages. First, we show that the different gradual type systems are practically distinguishable via a three-part litmus test. We present a formal framework for defining and comparing gradual type systems. Within this framework, different gradual type systems become translations between a common source and target language, allowing for direct comparison of semantics and guarantees
KafKa: Gradual Typing for Objects (Artifact)
A wide range of gradual type systems have been proposed, providing many
languages with the ability to mix typed and untyped code. However, hiding
under language details, these gradual type systems have fundamentally
different ideas of what it means to be typed. In this paper, we show that
four of the most common gradual type systems provide distinct guarantees,
and we give a formal framework for comparing gradual type systems for
object-oriented languages. First, we show that the different gradual type
systems are practically distinguishable via a three-part litmus test. Then,
we present a formal framework for defining and comparing gradual type
systems. Within this framework, different gradual type systems become
translations between a common source and target language, allowing for
direct comparison of semantics and guarantees
Acute: high-level programming language design for distributed computation
Existing languages provide good support for typeful programming of standalone programs. In a distributed system, however, there may be interaction between multiple instances of many distinct programs, sharing some (but not necessarily all) of their module structure, and with some instances rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming language support for such systems, focussing on their typing and naming issues. We describe an experimental language, Acute, which extends an ML core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across the entire distributed system; (3) expression-level names generated to ensure that name equality tests suffice for type-safety of associated values, e.g. values carried on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads and mutexes to support computation mobility. These features are a large part of what is needed for typeful distributed programming. They are a relatively lightweight extension of ML, should be efficiently implementable, and are expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs. This disentangles the language runtime from communication intricacies. This paper highlights the main design choices in Acute. It is supported by a full language definition (of typing, compilation, and operational semantics), by a prototype implementation, and by example distribution libraries
Reliable and Fast DWARF-Based Stack Unwinding
Debug information, usually encoded in the DWARF format, is a hidden and obscure component of our computing infrastructure. Debug information is obviously used by debuggers, but it also plays a key role in program analysis tools, and, most surprisingly, it can be relied upon by the runtime of high-level programming languages. For instance the C++ runtime leverages DWARF stack unwind tables to implement exceptions!Alas, generating debug information adds significant burden to compiler implementations, and the debug information itself can be pervaded by subtle bugs, making the whole infrastructure unreliable. Additionally,interpreting the debug tables is a time-consuming task and, for some applications as sampling profilers, it turns out to be a performance bottleneck.In this paper we focus on the DWARF.eh_frame table, that enables stack unwinding in absence of frame-pointers. We will describe two techniques to perform validation and synthesis of the DWARF stack unwinding tables, and their implementation for the x86_64 architecture. The validation tool has proven effective for compiler and inline assembly testing, while the synthesis tool can generate DWARF unwind tables for arbitrary binaries lacking debug information. Additionally, we report on a technique to precompile unwind tables into native x86_64 code, which we have implemented and integrated into libunwind, resulting in 11x-25xDWARF-based unwind speedups
Julia Subtyping: A Rational Reconstruction
OOPSLA, Article 113International audienceProgramming languages that support multiple dispatch rely on an expressive notion of subtyping to specify method applicability. In these languages, type annotations on method declarations are used to select, out of a potentially large set of methods, the one that is most appropriate for a particular tuple of arguments. Julia is a language for scientific computing built around multiple dispatch and an expressive subtyping relation. This paper provides the first formal definition of Julia's subtype relation and motivates its design. We validate our specification empirically with an implementation of our definition that we compare against the existing Julia implementation on a collection of real-world programs. Our subtype implementation differs on 122 subtype tests out of 6,014,476. The first 120 differences are due to a bug in Julia that was fixed once reported; the remaining 2 are under discussion
Acute: High-level programming language design for distributed computation : Design rationale and language definition
This paper studies key issues for distributed programming in high-level languages. We discuss the design space and describe an experimental language, Acute, which we have defined and implemented. Acute extends an OCaml core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. It is expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs, disentangling the language runtime from communication. This requires a synthesis of novel and existing features: (1) type-safe marshalling of values between programs; (2) dynamic loading and controlled rebinding to local resources; (3) modules and abstract types with abstraction boundaries that are respected by interaction; (4) global names, generated either freshly or based on module hashes: at the type level, as runtime names for abstract types; and at the term level, as channel names and other interaction handles; (5) versions and version constraints, integrated with type identity; (6) local concurrency and thread thunkification; and (7) second-order polymorphism with a namecase construct. We deal with the interplay among these features and the core, and develop a semantic definition that tracks abstraction boundaries, global names, and hashes throughout compilation and execution, but which still admits an efficient implementation strategy
Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory
We propose an axiomatic generic framework for modelling weak memory. We show how to instantiate this framework for SC, TSO, C++ restricted to release-acquire atomics, and Power. For Power, we compare our model to a preceding operational model in which we found a flaw. To do so, we define an operational model that we show equivalent to our axiomatic model. We also propose a model for ARM. Our testing on this architecture revealed a behaviour later acknowl-edged as a bug by ARM, and more recently 31 additional anomalies. We offer a new simulation tool, called herd, which allows the user to specify the model of his choice in a concise way. Given a specification of a model, the tool becomes a simulator for that model. The tool relies on an axiomatic description; this choice allows us to outperform all previous simulation tools. Additionally, we confirm that verification time is vastly improved, in the case of bounded model checking. Finally, we put our models in perspective, in the light of empirical data obtained by analysing the C and C++ code of a Debian Linux distribution. We present our new analysis tool, called mole, which explores a piece of code to find the weak memory idioms that it uses
- âŠ