18 research outputs found

    Detecting and Mitigating Denial-of-Service Attacks on Voice over IP Networks

    Get PDF
    Voice over IP (VoIP) is more susceptible to Denial of Service attacks than traditional data traffic, due to the former's low tolerance to delay and jitter. We describe the design of our VoIP Vulnerability Assessment Tool (VVAT) with which we demonstrate vulnerabilities to DoS attacks inherent in many of the popular VoIP applications available today. In our threat model we assume an adversary who is not a network administrator, nor has direct control of the channel and key VoIP elements. His aim is to degrade his victim's QoS without giving away his presence by making his attack look like a normal network degradation. Even black-boxed, applications like Skype that use proprietary protocols show poor performance under specially crafted DoS attacks to its media stream. Finally we show how securing Skype relays not only preserves many of its useful features such as seamless traversal of firewalls but also protects its users from DoS attacks such as recording of conversations and disruption of voice quality. We also present our experiences using virtualization to protect VoIP applications from 'insider attacks'. Our contribution is two fold we: 1) Outline a threat model for VoIP, incorporating our attack models in an open-source network simulator/emulator allowing VoIP vendors to check their software for vulnerabilities in a controlled environment before releasing it. 2) We present two promising approaches for protecting the confidentiality, availability and authentication of VoIP Services

    User interfaces for applications on a wrist watch

    Get PDF
    Abstract: Advances in technology have made it possible to package a reasonably powerful processor and memory subsystem coupled with an ultra high-resolution display and wireless communication into a wrist watch. This introduces a set of challenges in the nature of input devices, navigation, applications, and other areas. This paper describes a wearable computing platform in a wrist watch form-factor we have developed. We built two versions: one with a low resolution liquid crystal display; and another with a ultra high resolution organic light emitting diode display. In this paper we discuss the selection of the input devices and the design of applications and user interfaces for these two prototypes, and the compare the two versions

    An Optimistic-Robust Approach for Dynamic Positioning of Omnichannel Inventories

    Full text link
    We introduce a new class of data-driven and distribution-free optimistic-robust bimodal inventory optimization (BIO) strategy to effectively allocate inventory across a retail chain to meet time-varying, uncertain omnichannel demand. While prior Robust optimization (RO) methods emphasize the downside, i.e., worst-case adversarial demand, BIO also considers the upside to remain resilient like RO while also reaping the rewards of improved average-case performance by overcoming the presence of endogenous outliers. This bimodal strategy is particularly valuable for balancing the tradeoff between lost sales at the store and the costs of cross-channel e-commerce fulfillment, which is at the core of our inventory optimization model. These factors are asymmetric due to the heterogenous behavior of the channels, with a bias towards the former in terms of lost-sales cost and a dependence on network effects for the latter. We provide structural insights about the BIO solution and how it can be tuned to achieve a preferred tradeoff between robustness and the average-case. Our experiments show that significant benefits can be achieved by rethinking traditional approaches to inventory management, which are siloed by channel and location. Using a real-world dataset from a large American omnichannel retail chain, a business value assessment during a peak period indicates over a 15% profitability gain for BIO over RO and other baselines while also preserving the (practical) worst case performance

    Hierarchy-guided Model Selection for Time Series Forecasting

    Full text link
    Generalizability of time series forecasting models depends on the quality of model selection. Temporal cross validation (TCV) is a standard technique to perform model selection in forecasting tasks. TCV sequentially partitions the training time series into train and validation windows, and performs hyperparameter optmization (HPO) of the forecast model to select the model with the best validation performance. Model selection with TCV often leads to poor test performance when the test data distribution differs from that of the validation data. We propose a novel model selection method, H-Pro that exploits the data hierarchy often associated with a time series dataset. Generally, the aggregated data at the higher levels of the hierarchy show better predictability and more consistency compared to the bottom-level data which is more sparse and (sometimes) intermittent. H-Pro performs the HPO of the lowest-level student model based on the test proxy forecasts obtained from a set of teacher models at higher levels in the hierarchy. The consistency of the teachers' proxy forecasts help select better student models at the lowest-level. We perform extensive empirical studies on multiple datasets to validate the efficacy of the proposed method. H-Pro along with off-the-shelf forecasting models outperform existing state-of-the-art forecasting methods including the winning models of the M5 point-forecasting competition

    Guest Editors' Introduction

    No full text

    User Interfaces for Applications on a Wrist Watch

    No full text

    Unleashing the power of wearable devices in a SIP infrastructure

    No full text
    The Session Initiation Protocol (SIP) has been widely adopted for Instant Messaging (IM) and VoIP telephony both by the enterprise and in service provider systems. Till now, SIP functionality has been accessible to endusers primarily via computing platforms such as an IM client on a laptop or on communication platforms such as an IP Phone or a cell phone. We show that wearable devices such as the IBM Linux Watch (WatchPad TM) can play a powerful role as a control device in a SIP infrastructure, given their easily accessible, always available, and visible user-interfaces. We have designed and prototyped several key control applications, using a SIP User Agent on the WatchPad, such as the ability to initiate and route incoming and outgoing phone calls, receive simple queries as Instant Messages, and call initiation based on address books residing on wearable devices. We discuss other examples such as video conferencing and the authentication layer for work flow. Our investigation and implementation shows that wearable devices can plug an important gap and significantly enhance user experience. 1

    Reincarnating PCs with portable SoulPads

    No full text
    Authors listed in alphabetical order The ability to walk up to any computer, personalize it, and use it as one’s own has long been a goal of mobile computing research. We present SoulPad, a new approach based on carrying an auto-configuring operating system along with a suspended virtual machine on a small portable device. With this approach, the computer boots from the device and resumes the virtual machine, thus giving the user access to his personal environment, including previously running computations. SoulPad has minimal infrastructure requirements and is therefore applicable to a wide range of conditions, particularly in developing countries. We report our experience implementing SoulPad and using it on a variety of hardware configurations. We address challenges common to systems similar to SoulPad, and show that the SoulPad model has significant potential as a mobility solution.
    corecore