43 research outputs found

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Photodimerization of coumarins in the solid state

    No full text
    Photochemical dimerization of 7-methoxycoumarin occurs in the solid state to give high yields of a syn-head-to-tail dimer although the potentially reactive double bonds are not favourably oriented in the crystal of the monomer

    Topochemical photodimerization of 7-acetoxycoumarin: the acetoxy group as a steering agent

    No full text
    Among the various substituted coumarins investigated only 7-acetoxycoumarin is observed to photodimerize topochemically in the crystalline state and this observation may be of importance in the context of "crystal engineering"

    Enzymatic Detachment of Staphylococcus epidermidis Biofilms

    No full text
    The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by releasing extracellular slime from S. epidermidis cells. Precoating surfaces with the enzyme prevented S. epidermidis biofilm formation. Our findings demonstrate that biofilm-releasing enzymes can exhibit broad-spectrum activity and that these enzymes may be useful as antibiofilm agents

    Transmission electron microscopy.

    No full text
    <p>a) IDH781 cells; b) EA1002 cells showing lucent regions in the periphery corresponding to accumulation of glycogen (red arrows). Magnification: x5000; Scale: 2 micron; c) Accumulation of glycogen in EA1002 shown using iodine staining. The EA1002 and IDH781 cells are shown in triplicate. The bottom row of wells is control wells without any bacterial inoculum and stained with iodine.</p

    Primers used in qPCR experiment.

    No full text
    <p>Primers used in qPCR experiment.</p

    Pathway analysis plot.

    No full text
    <p>Number of up- and down-regulated genes in <i>A</i>. <i>actinomycetemcomitans</i> IDH781 strain. In this comparison, up-regulated genes in the the mutant strain EA1002 deficient in PGA synthesis are shown in light blue. Data are grouped according to the major role categories. Positive and negative numbers correspond to the up- and down-regulated genes, respectively. Statistical values for the various pathways are provided in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134285#pone.0134285.s003" target="_blank">S2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0134285#pone.0134285.s004" target="_blank">S3</a> Tables.</p
    corecore