361 research outputs found

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (∌109−10.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Spintessence: a possible candidate as a driver of the late time cosmic acceleration

    Full text link
    In this paper, it is shown completely analytically that a spintessence model can very well serve the purpose of providing an early deceleration and the present day acceleration.Comment: 5 pages, no figure. Accepted for publication in Astrophysics and Space Scienc

    Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions

    Full text link
    We revisit the vertical structure of neutrino dominated accretion flows (NDAFs) in spherical coordinates with a new boundary condition based on the mechanical equilibrium. The solutions show that NDAF is significantly thick. The Bernoulli parameter and neutrino trapping are determined by the mass accretion rate and the viscosity parameter. According to the distribution of the Bernoulli parameter, the possible outflow may appear in the outer region of the disk. The neutrino trapping can essentially affect the neutrino radiation luminosity. The vertical structure of NDAF is like a "sandwich", and the multilayer accretion may account for the flares in gamma-ray bursts.Comment: 7 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc

    Gravitational Collapse in Higher Dimensional Husain Space-Time

    Full text link
    We investigate exact solution in higher dimensional Husain model for a null fluid source with pressure pp and density ρ\rho are related by the following relations (i) p=kρp=k\rho, (ii) p=kρ−B(v)ραp=k\rho-\frac{B(v)}{\rho^{\alpha}} (variable modified Chaplygin) and (iii) p=kραp=k\rho^{\alpha} (polytropic). We have studied the nature of singularity in gravitational collapse for the above equations of state and also for different choices of the of the parameters kk and BB namely, (i) k=0k=0, B=B= constant (generalized Chaplygin), (ii) B=B= constant (modified Chaplygin). It is found that the nature of singularity is independent of these choices of different equation of state except for variable Chaplygin model. Choices of various parameters are shown in tabular form. Finally, matching of Szekeres model with exterior Husain space-time is done.Comment: 12 latex pages, No figure, RevTex styl

    The Physical Interpretation of X-ray Phase Lags and Coherence: RXTE Observations of Cygnus X--1 as a Case Study

    Get PDF
    There have been a number of recent spectral models that have been successful in reproducing the observed X-ray spectra of galactic black hole candidates (GBHC). However, there still exists controversy over such issues as: what are the sources of hard radiation, what is the system's geometry, is the accretion efficient or inefficient, etc. A potentially powerful tool for distinguishing among these possibilities, made possible by the Rossi X-ray Timing Explorer (RXTE), is the variability data, especially the observed phase lags and variability coherence. These data, in conjunction with spectral modeling, have the potential of determining physical sizes of the system, as well as placing strong constraints on both Compton corona and advection models. As an example, we present RXTE variability data of Cygnus X-1Comment: To Appear in the Proceedings of the Symposium "The Active X-ray Sky", held October 21-24, 1997, Rom

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters Ξ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Finding Faint Intermediate-mass Black Holes in the Radio Band

    Full text link
    We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a ∌10,000−100,000M⊙\sim 10,000-100,000 M_\odot black hole.Comment: 10 pages, no figures, to appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Three Generation Neutrino Oscillation Parameters after SNO

    Get PDF
    We examine the solar neutrino problem in the context of the realistic three neutrino mixing scenario including the SNO charged current (CC) rate. The two independent mass squared differences Δm212\Delta m^2_{21} and Δm312≈Δm322\Delta m^2_{31} \approx \Delta m^2_{32} are taken to be in the solar and atmospheric ranges respectively. We incorporate the constraints on Δ\Deltam312^2_{31} as obtained by the SuperKamiokande atmospheric neutrino data and determine the allowed values of Δm212\Delta m^2_{21}, Ξ12\theta_{12} and Ξ13\theta_{13} from a combined analysis of solar and CHOOZ data. Our aim is to probe the changes in the values of the mass and mixing parameters with the inclusion of the SNO data as well as the changes in the two-generation parameter region obtained from the solar neutrino analysis with the inclusion of the third generation. We find that the inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more restrictive bound on Ξ13\theta_{13}. Since the allowed values of Ξ13\theta_{13} are constrained to very small values by the CHOOZ experiment there is no qualitative change over the two generation allowed regions in the Δm212−tan⁥2Ξ12\Delta m^2_{21} - \tan^2 \theta_{12} plane. The best-fit comes in the LMA region and no allowed area is obtained in the SMA region at 3σ\sigma level from combined solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    General Overview of Black Hole Accretion Theory

    Full text link
    I provide a broad overview of the basic theoretical paradigms of black hole accretion flows. Models that make contact with observations continue to be mostly based on the four decade old alpha stress prescription of Shakura & Sunyaev (1973), and I discuss the properties of both radiatively efficient and inefficient models, including their local properties, their expected stability to secular perturbations, and how they might be tied together in global flow geometries. The alpha stress is a prescription for turbulence, for which the only existing plausible candidate is that which develops from the magnetorotational instability (MRI). I therefore also review what is currently known about the local properties of such turbulence, and the physical issues that have been elucidated and that remain uncertain that are relevant for the various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes (Springer Publisher
    • 

    corecore