3,048 research outputs found

    Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites

    Get PDF
    Aerosol-jet printing allows functional materials to be printed from inks with a wide range of viscosities and constituent particle sizes onto various substrates, including the printing of organic thermoelectric materials on flexible substrates for low-grade thermal energy harvesting. However, these materials typically suffer from relatively poor thermoelectric performance, compared to traditional inorganic counterparts, due to their low Seebeck coefficient, S, and electrical conductivity, σ. Here, we demonstrate a modified aerosol-jet printing technique that can simultaneously incorporate well dispersed high S Sb2Te3 nanoflakes, and high-σ multi-walled carbon nanotubes (MWCNTs) providing good inter-particle connectivity, to significantly enhance the thermoelectric performance of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures on flexible polyimide substrates. A nominal loading fraction of 85 wt.% yielded a power factor of ~41 ”W/mK2, which is among the highest for printed organic-based structures. Rigorous flexing and fatigue tests were performed to confirm the robustness and stability of these aerosol-jet printed MWCNT-based thermoelectric nanocomposites

    Observation of Confinement-Induced Self-Poling Effects in Ferroelectric Polymer Nanowires Grown by Template Wetting

    Get PDF
    Ferroelectric polymer nanowires grown using a template-wetting method are shown to achieve an orientated 'self-poled' structure resulting from the confined growth process. Self-poling is highly desirable as it negates the need for high electric fields, mechanical stretching and/or high temperatures typically associated with poling treatments in ferroelectric polymers, as required for piezoelectric and/or pyroelectric applications. Here, we present differential scanning calorimetry, infrared spectroscopy and dielectric permittivity measurements on as-fabricated template-grown polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) nanowires, and quantitatively compare the results with spin-cast films of the same composition that have been electrically poled, both before and after subsequent de-poling temperature treatment. The measurements reveal remarkably similar trends between the physical properties of the as-grown nanowires and the electrically poled film samples, providing insight into the material structure of the 'self-poled' nanowires. In addition, piezo-response force microscopy (PFM) data is presented that allow s for unambiguous identification of self-poling in ferroelectric polymer nanostructures, and indicates the suitability of the template-wetting approach in fabricating nanowires that can be used directly for piezoelectric/pyroelectric applications, without the need for post-deposition poling/processing.The authors are grateful for financial support from the European Research Council through an ERC Starting Grant (Grant no. ERC-2014-STG-639526, NANOGEN). R.A.W. thanks the EPSRC Cambridge NanoDTC, EP/G037221/1, for studentship funding.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley

    Designing of Next Generation Motor Drive Control for Electric Vehicle Application

    Get PDF
    In order to achieve a mission of zero emission, as most automotive industries around the world are pledging to, the research and production of efficient and eco-friendly electrified vehicles (EVs) is a necessary goal to pursue. They are of high interest to governments and research facilities across the world as they have higher efficiency levels and are more environmentally friendly than current gasoline vehicles. At the core of electric vehicle application, electric motor drives act an important role to direct the motor to convert electrical energy into mechanical energy and provide electrical control of the processes. Therefore, it is required for researchers to make the motor drive more energy-efficient and have bi-directional power flow capability to ensure the improvement of motor performance and be flexible regarding controllability. The goal of the author is to investigate the development of a better motor-drive to achieve a control that provides a superior control of the traction motor. This requires improving the existing flux weakening motor control that is used for traction application. The improved control is programmed and hard coded into a Digital signal processor which is embedded in the control drive board. In a conventional inverter, this drive unit controls the gate drivers which in turn controls the IGBTs, there by enabling variation in operating performance of the motor. Currently, there is a lack of unified program that can operate any kind of traction motor like permanent magnet synchronous motors (PMSM) or induction motors(IM). This is leading automotive industries to invest a lot of resources in research and development in this field of work so that the future vehicles can be swapped with any motor as per requirement. The authors are currently working on developing this motor control and also reducing the complexity of the code and real-time operation on the microcontroller. This will be implemented in future on existing and new-generation inverters to test the control on various motor and inverter setups

    Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites

    Get PDF
    Free-standing flexible magnetoelectric 0-3 composite films, comprising Ni0.5Zn0.5Fe2O4 (NZFO) ferrite nanoparticles in a poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer matrix, have been prepared at low temperatures by solvent casting and melt crystallization. Ferroelectric, piezoelectric, magnetic and direct magnetoelectric properties of the nanocomposites depend strongly on ferrite concentration. Magnetoelectric voltage coefficients increase linearly with applied dc magnetic-bias fields up to 5 kOe and show no hysteresis. At this field, a maximum magnetoelectric voltage coefficient of 1.35 mV cm 1 Oe 1 was obtained for samples with 15 wt. % ferrite using a 40 kHz resonant signal.FEDER “Programa Operacional Factores de Competitividade – COMPETE” (NANO/NMed-SD/0156/2007)Fundação para a CiĂȘncia e a Tecnologia (FCT) - (PTDC/CTM/69316/2006), (SFRH/BD/45265/2008)Engineering and Physical Sciences Research Council (EPSRC

    Controlling and assessing the quality of aerosol jet printed features for large area and flexible electronics

    Get PDF
    Aerosol jet printing (AJP) is a versatile technique suitable for large-area, fine-feature patterning of both rigid and flexible substrates with a variety of functional inks. In particular, AJP can tolerate ink viscosities between 1 and 1000 cP, with printing resolution of the order of 10 ÎŒm, thus making it attractive for flexible and printed electronics. This work investigates in detail significant aspects of ink-substrate combination and substrate temperature that are highly relevant to AJP. In order to do this, thin conducting silver lines are printed using AJP on both rigid (glass and silicon) as well as flexible (polyimide) substrates. The correlation between the various deposition parameters and the 'quality' of the printed lines are evaluated, through measurements of electrical conductivity under different experimental conditions. Based on our findings, a framework is proposed through which the morphology of AJP lines can be controlled and assessed for applications in large area and flexible electronic devices.SK-N, MS and YSC are grateful for financial support from the European Research Council through an ERC Starting Grant (Grant No. ERC-2014-STG-639526, NANOGEN). MS and YSC acknowledge studentship funding from the Cambridge Commonwealth, European & International Trust. CB thanks the EPSRC Cambridge NanoDTC, EP/G037221/1, for studentship funding

    Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    Get PDF
    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∌250 nm, length ∌12 ÎŒm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∌4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.The authors thank Yeonsik Choi for discussions and experimental support. S.K.-N., C.O., and A.D. are grateful for financial support from the European Research Council through an ERC Starting Grant (Grant no. ERC-2014-STG-639526, NANOGEN). F.L.B. and R.A.W. thank the EPSRC Cambridge NanoDTC, EP/G037221/1, for studentship funding. P.S.J. acknowledges the support of TEP-1900 and Talentia Postdoc Program, cofunded by the European Union’s Seventh Framework Program, Marie SkƂodowska-Curie actions (COFUND Grant Agreement 267226) and the Ministry of Economy, Innovation, Science and Employment of the Junta de AndalucĂ­a. S-L.S acknowledges support through the EPSRC grant EP/M010589/1This is the final version of the article. It first appeared from American Chemical Society via http://dx.doi.org/10.1021/acsami.6b04041
    • 

    corecore