8,077 research outputs found

    Extracting black-hole rotational energy: The generalized Penrose process

    Full text link
    In the case involving particles the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor TμνT_{\mu \nu} and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks" we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to 300%\sim 300\% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.Comment: 24 pages, 14 figures, version published in Phys. Rev.

    The slimming effect of advection on black-hole accretion flows

    Full text link
    At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R1H/R \lesssim 1) or thick (H/R >1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. We wish to establish under what conditions slim accretion flows become thick. We use analytical equations, numerical 1+1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates.We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.Comment: 8 pages, 5 figures. Astronomy & Astrophysics, in pres

    P53 tumour-suppressor gene mutations are mainly localised on exon 7 in human primary and metastatic prostate cancer.

    Get PDF
    Mutations in the p53 tumour-suppressor gene are among the most common genetic alterations in human cancers. In the present study we analysed the mutations in the p53 tumor-suppressor gene in 25 primary and 20 metastatic human prostate cancer specimens. DNA extracted from the paraffin-embedded sections was amplified by hot-start polymerase chain reaction, and p53 gene mutations in the conserved mid-region (exons 4-9) were examined using single-strand conformation polymorphism (SSCP) analysis and immunohistochemistry. In the present study, we used a novel hot-start PCR-SSCP technique using DNA Taq polymerase antibody, which eliminates primer-dimers and non-specific products. Because of this new technique, the results of PCR-SSCP showed very high resolution. Polymerase chain reaction products were sequenced directly for point mutations for the p53 gene. Mutations were found in 2 out of 25 primary prostate cancers (8%) and 4 out of 20 metastatic cancers (20%). Mutations were observed exclusively in exon 7 and not in exons 4, 5, 6, 8 or 9. Nuclear accumulation of p53 protein, determined by immunohistochemistry, correlated with the degree of metastasis in prostatic cancer

    Bypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Approach

    Full text link
    Cold accretion disks such as those in star-forming systems, quiescent cataclysmic variables, and some active galactic nuclei, are expected to have neutral gas which does not couple well to magnetic fields. The turbulent viscosity in such disks must be hydrodynamic in origin, not magnetohydrodynamic. We investigate the growth of hydrodynamic perturbations in a linear shear flow sandwiched between two parallel walls. The unperturbed flow is similar to plane Couette flow but with a Coriolis force included. Although there are no exponentially growing eigenmodes in this system, nevertheless, because of the non-normal nature of the eigenmodes, it is possible to have a large transient growth in the energy of perturbations. For a constant angular momentum disk, we find that the perturbation with maximum growth has a wave-vector in the vertical direction. The energy grows by more than a factor of 100 for a Reynolds number R=300 and more than a factor of 1000 for R=1000. Turbulence can be easily excited in such a disk, as found in previous numerical simulations. For a Keplerian disk, on the other hand, similar vertical perturbations grow by no more than a factor of 4, explaining why the same simulations did not find turbulence in this system. However, certain other two-dimensional perturbations with no vertical structure do exhibit modest growth. For the optimum two-dimensional perturbation, the energy grows by a factor of ~100 for R~10^4.5 and by a factor of 1000 for R~10^6. It is conceivable that these two-dimensional disturbances might lead to self-sustained turbulence. The Reynolds numbers of cold astrophysical disks are much larger even than 10^6, therefore, hydrodynamic turbulence may be possible in disks.Comment: 39 pages including 9 figures; Final version to appear in The Astrophysical Journa

    Universality of One-Dimensional Heat Conductivity

    Full text link
    We show analytically that the heat conductivity of oscillator chains diverges with system size N as N^{1/3}, which is the same as for one-dimensional fluids. For long cylinders, we use the hydrodynamic equations for a crystal in one dimension. This is appropriate for stiff systems such as nanotubes, where the eventual crossover to a fluid only sets in at unrealistically large N. Despite the extra equation compared to a fluid, the scaling of the heat conductivity is unchanged. For strictly one-dimensional chains, we show that the dynamic equations are those of a fluid at all length scales even if the static order extends to very large N. The discrepancy between our results and numerical simulations on Fermi-Pasta-Ulam chains is discussed.Comment: 7 pages, 2 figure

    Time Dependent Cosmologies and Their Duals

    Get PDF
    We construct a family of solutions in IIB supergravity theory. These are time dependent or depend on a light-like coordinate and can be thought of as deformations of AdS_5 x S^5. Several of the solutions have singularities. The light-like solutions preserve 8 supersymmetries. We argue that these solutions are dual to the N=4 gauge theory in a 3+1 dimensional spacetime with a metric and a gauge coupling that is varying with time or the light-like direction respectively. This identification allows us to map the question of singularity resolution to the dual gauge theory.Comment: 13 pages REVTeX and AMSLaTeX. v2: corrected typos and made some clarifications; reference added; v3: more clarifications, references adde

    In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    Get PDF
    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed

    In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    Get PDF
    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed

    Observational Prospects for Afterglows of Short Duration Gamma-ray Bursts

    Get PDF
    If the efficiency for producing γ\gamma-rays is the same in short duration (\siml 2 s) Gamma-Ray Bursts (GRBs) as in long duration GRBs, then the average kinetic energy of short GRBs must be 20\sim 20 times less than that of long GRBs. Assuming further that the relativistic shocks in short and long duration GRBs have similar parameters, we show that the afterglows of short GRBs will be on average 10--40 times dimmer than those of long GRBs. We find that the afterglow of a typical short GRB will be below the detection limit (\siml 10 \microJy) of searches at radio frequencies. The afterglow would be difficult to observe also in the optical, where we predict R \simg 23 a few hours after the burst. The radio and optical afterglow would be even fainter if short GRBs occur in a low-density medium, as expected in NS-NS and NS-BH merger models. The best prospects for detecting short-GRB afterglows are with early (\siml 1 day) observations in X-rays.Comment: 5 pages, 2 figures, submitted to ApJ lette
    corecore