6 research outputs found

    An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions

    No full text
    In this study, a flat-plate channel configured with pyramidal protrusions are numerically analysed for the first time. Simulations of laminar single-phase fluid flow and heat transfer characteristics are developed using a finite-volume approach under steady-state condition. Pure water is selected as the coolant and its thermo-physical properties are modelled using a set of temperature-dependent functions. Different configurations of the channel, including a plain channel and a channel with nature-inspired protruded surfaces, are studied here for Reynolds numbers ranging from 135 to 1430. The effects of the protrusion shape, size and arrangement on the hydrothermal performance of a flat-plate channel are studied in details. The temperature of the upper and lower surfaces of the channel is kept constant during the simulations. It is observed that utilizing these configurations can boost the heat transfer up to 277.9% and amplify the pressure loss up to 179.4% with a respect to the plain channel. It is found that the overall efficiency of the channels with pyramidal protrusions is improved by 12.0-169.4% compared to the plain channel for the conditions studied here. Furthermore, the thermodynamic performance of the channel is investigated in terms of entropy generation and it is found that equipping the channels with pyramidal protrusions leads to lower irreversibility in the system.(OLD) MSE-

    Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids

    No full text
    Cooling of electronic devices is one of the critical challenges that the electronics industry is facing towards sustainable development. Aiming at lowering the surface temperature of the heat sink to limit thermally induced deformations, corrugated channels and nanofluids are employed to improve the thermal and hydraulic performances of a heat sink. Three-dimensional simulations based on the finite-volume approach are carried out to study conjugated heat transfer in the heat sink. Water-based nanofluids containing Al2O3 nanoparticles with two different particle sizes (29 nm and 40 nm) and volume fractions less than 4% are employed as the coolant, and their influence on the thermal and hydraulic performance of the heat sink is compared with the base fluid (i.e. water). An empirical model is utilised to approximate the effective transport properties of the nanofluids. Employing corrugated channels instead of straight channels in the heat sink results in an enhancement of 24–36% in the heat transfer performance at the cost of 20–31% increase in the required pumping power leading to an enhancement of 16–24% in the overall performance of the heat sink. Additionally, the numerical predictions indicate that the overall performance of the proposed heat sink design with corrugated channels and water–Al2O3 nanofluids is 22–40% higher than that of the water-cooled heat sink with straight channels. It is demonstrated that the overall performance of the heat sink cooled with water–Al2O3 nanofluids increases with reducing the average nanoparticle size. Additionally, the maximum temperature rise in the heat sinks is determined for different thermal loads.(OLD) MSE-

    Laminar convective heat transfer of shear-thinning liquids in rectangular channels with longitudinal vortex generators

    No full text
    Heat and fluid flow in a rectangular channel heat sink equipped with longitudinal vortex generators have been numerically investigated in the range of Reynolds numbers between 25 and 200. Aqueous solutions of carboxymethyl cellulose (CMC) with different concentrations (200–2000 ppm), which are shear-thinning non-Newtonian liquids, have been utilised as working fluid. Three-dimensional simulations have been performed on a plain channel and a channel with five pairs of vortex generators. The channels have a hydraulic diameter of 8 mm and are heated by constant wall temperature. The vortex generators have been mounted at different angles of attack and locations inside the channel. The shear-thinning liquid flow in rectangular channels with longitudinal vortex generators are described and the mechanisms of heat transfer enhancement are discussed. The results demonstrate a heat transfer enhancement of 39–188% using CMC aqueous solutions in rectangular channels with LVGs with respect to a Newtonian liquid flow (i.e. water). Additionally, it is shown that equipping rectangular channels with LVGs results in an enhancement of 24–135% in heat transfer performance vis-à-vis plain channel. However, this heat transfer enhancement is associated with larger pressure losses. For the range of parameters studied in this paper, increasing the CMC concentration, the angle of attack of vortex generators and their lateral distances leads to an increase in heat transfer performance. Additionally, heat transfer performance of rectangular channels with longitudinal vortex generators enhances with increasing the Reynolds number in the laminar flow regime.(OLD) MSE-

    Numerical simulation of peristalsis to study co-localization and intestinal distribution of a macromolecular drug and permeation enhancer

    No full text
    In this work, simulations of intestinal peristalsis are performed to investigate the intraluminal transport of macromolecules (MMs) and permeation enhancers (PEs). Properties of insulin and sodium caprate (C10) are used to represent the general class of MM and PE molecules. Nuclear magnetic resonance spectroscopy was used to obtain the diffusivity of C10, and coarse-grain molecular dynamics simulations were carried out to estimate the concentration-dependent diffusivity of C10. A segment of the small intestine with the length of 29.75 cm was modeled. Peristaltic speed, pocket size, release location, and occlusion ratio of the peristaltic wave were varied to study the effect on drug transport. It was observed that the maximum concentration at the epithelial surface for the PE and the MM increased by 397 % and 380 %, respectively, when the peristaltic wave speed was decreased from 1.5 to 0.5 cm sâ\u88\u921. At this wave speed, physiologically relevant concentrations of PE were found at the epithelial surface. However, when the occlusion ratio is increased from 0.3 to 0.7, the concentration approaches zero. These results suggest that a slower-moving and more contracted peristaltic wave leads to higher efficiency in transporting mass to the epithelial wall during the peristalsis phases of the migrating motor complex
    corecore