7,758 research outputs found

    Resampling adaptive cloth simulations onto fixed-topology meshes

    Get PDF
    We describe a method for converting an adaptively remeshed simulation of cloth into an animated mesh with fixed topology. The topology of the mesh may be specified by the user or computed automatically. In the latter case, we present a method for computing the optimal output mesh, that is, a mesh with spatially varying resolution which is fine enough to resolve all the detail present in the animation. This technique allows adaptive simulations to be easily used in applications that expect fixed-topology animated meshes

    Determination of Resistance Factor for Tortuous Paths in Drip Emitters

    Get PDF
    Drip irrigation has the potential to decrease water consumption and increase crop yields and profit. Globally, drip irrigation has had low adoption rates. There are several major barriers to adoption, including the cost of the system and its energy consumption. Mathematical models describing the behavior of drip emitters can provide insights on the performance of drip systems. The models and procedures developed in this paper can be used as a tool for the design of improved drip irrigation systems. This paper presents a method of combining a CFD model that characterizes flow through the tortuous paths of emitters with an analytical model describing pressure-compensating behavior. The CFD model detailed in this paper was verified for three commercially available emitter designs. The model fell within acceptable variation bounds when compared to experimental data. The results of CFD analysis are represented in a resistance factor that can be used in a hybrid analyticalcomputational model. This method requires significantly less processing than using computational models alone. Future work on this topic will detail an analytical model that accurately predicts the behavior of inline PC drip emitters of varying geometries and an optimization of the geometry to lower activation pressure and material costs. Analytical models to predict the flow behavior of a range of tortuous path designs given a prescribed geometry will also be developed.Jain Irrigation System Ltd.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    A Hybrid Computational and Analytical Model of Inline Drip Emitters

    Get PDF
    This paper details a hybrid computational and analytical model to predict the performance of inline pressure-compensating (PC) drip irrigation emitters. The term inline refers to flow control devices mounted within the irrigation tubing. Pressure-compensating emitters deliver a relatively constant flow rate over a range applied pressure to accurately meter water to crops. Flow rate is controlled within the emitter by directing the water through a tortuous path (which imposes a fixed resistance), and then through a variable resistor composed of a flexible membrane that deflects under changes in pressure, restricting the flow path. An experimentally validated computational fluid dynamics (CFD) model was used to predict flow behavior through tortuous paths, and a pressure resistance parameter was derived to represent the pressure drop with a single variable. The bending and shearing mechanics of the membrane were modeled analytically and refined for accuracy by deriving a correction factor using finite element analysis. A least-squares matrix formulation that calculates the force applied by a line load of any shape, along which there is a prescribed deflection applied on a rectangular membrane, was derived and was found to be accurate to within one percent. The applicability of the assumption of locally fully developed flow through the pressure compensating chamber in a drip emitter was analyzed. The combined hybrid computational-analytical model reduces the computational time of modeling drip emitter performance from days to less than 30 minutes, dramatically lowering the time required to iterate and select optimal designs. The model was validated using three commercially available drip emitters, rated at 1.1, 2, and 3.8 L/hr. For each, the model predicted the flow rate with an error of twenty percent or less, as compared to the emitter performance published by the manufacturer.Jain Irrigation Systems Ltd.National Science Foundation (U.S.). Graduate Research FellowshipMassachusetts Institute of Technology. Tata Center for Technology and Desig

    Radial Vibration of an Aeolotropic Cylindrical Shell of Varying Density in a Magnetic Field

    Get PDF
    In this paper, we have discussed the problem of vibration of cylindrical shell of aelotropic material of variable density for two different cases- first, when the density varies linearly and second, when it varies inversely as the radius vecto

    Are Coronae of Magnetically Active Stars Heated by Flares? III. Analytical Distribution of Superimposed Flares

    Full text link
    (abridged) We study the hypothesis that observed X-ray/extreme ultraviolet emission from coronae of magnetically active stars is entirely (or to a large part) due to the superposition of flares, using an analytic approach to determine the amplitude distribution of flares in light curves. The flare-heating hypothesis is motivated by time series that show continuous variability suggesting the presence of a large number of superimposed flares with similar rise and decay time scales. We rigorously relate the amplitude distribution of stellar flares to the observed histograms of binned counts and photon waiting times, under the assumption that the flares occur at random and have similar shapes. Applying these results to EUVE/DS observations of the flaring star AD Leo, we find that the flare amplitude distribution can be represented by a truncated power law with a power law index of 2.3 +/- 0.1. Our analytical results agree with existing Monte Carlo results of Kashyap et al. (2002) and Guedel et al. (2003). The method is applicable to a wide range of further stochastically bursting astrophysical sources such as cataclysmic variables, Gamma Ray Burst substructures, X-ray binaries, and spatially resolved observations of solar flares.Comment: accepted for publication in Ap

    Building GUTs from strings

    Get PDF
    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 4545 or 5454-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10)SO(10) GUTs, only a single GUT-Higgs, either a 5454 or a 4545, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5)SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed.Comment: 40 pages, no figures, Late

    One Loop Beta Functions in Topologically Massive Gravity

    Full text link
    We calculate the running of the three coupling constants in cosmological, topologically massive 3d gravity. We find that \nu, the dimensionless coefficient of the Chern-Simons term, has vanishing beta function. The flow of the cosmological constant and Newton's constant depends on \nu, and for any positive \nu there exist both a trivial and a nontrivial fixed point.Comment: 44 pages, 16 figure

    Asymmetric Non-Abelian Orbifolds and Model Building

    Full text link
    The rules for the free fermionic string model construction are extended to include general non-abelian orbifold constructions that go beyond the real fermionic approach. This generalization is also applied to the asymmetric orbifold rules recently introduced. These non-abelian orbifold rules are quite easy to use. Examples are given to illustrate their applications.Comment: 30 pages, Revtex 3.
    corecore