Radial vibration of an aeolotropic cylindrical shell of varying density in a magnetic field

Surya Narain and B. G. Verma
Department of Mathematics, University of Gorakhpur, Gorakhpur.

(Received 4 December 1971)
In this paper, we have discussed the problem of vibration of oylindrical shell of aolotropio material of variable density for two different casosfirst, when the density varies linoarly and second, when it varies inversely as the radius vector.

1. Introduction

Yadava (1968) obtained the solution of the problem of vibration of a cylindrical sholl in a magnetic field, tho material of the shell being aeolotropic and density uniform. In this papor, the discussion has been extended to the problem of vibration of a cylindrical shell of aelotropic material of variable donsity. Two cases have been considered. Tho fiirst, when the density varies linoarly and the second, when it varies inversely as the radius vector. Such problems of magnetoelastic vibrations are of much importance in viow of increasing invostigations on radiation of olectromagnetic energy into the vacuum adjacent to magnotc-elastic bodies.

2. The Problem, Fundamental Equations and Boundary Conditions

Wo considor an aeolotropic, perfectly conducting cylindrical shell of inner and outor radii r_{1} and r_{2} respectively and the space outside the shell to be vacuum. We consider the boundary of the shell to be mechanically stress free. Initially there exists an axial magnetic field of intensity H in the shell. Then the constitutive relations for aeolotropic bodios in cylindrical coordinates (r, θ, z) as given by Love (1944) are,

$$
\begin{align*}
& \sigma_{r r}=c_{11} e_{r r}+c_{12} e_{\theta \theta}+c_{13} e_{z z} \\
& \sigma_{\theta \theta}=c_{21} e_{r r}+c_{22} e_{\theta \theta}+c_{23} e_{z z} \tag{2,1}\\
& \sigma_{z z}=c_{31} e_{r r}+c_{32} e_{\theta \theta}+c_{33} e_{z z}
\end{align*}
$$

where $\sigma_{r r}, \sigma_{\theta \theta}, \sigma_{z c}$ and $e_{r r}, e_{\theta \theta}, e_{z z}$ are the components of stress and strain respectively. The equations of magneto-elasticity for a perfect conductor with unit permeability as deduoed by Kailiski (1963) are,

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\sigma_{r r}\right)+\frac{\sigma_{r r}-\sigma_{6 g}}{-r}+\frac{1}{4 \pi}[\operatorname{rot} \operatorname{rot}(u \times H)] \times H=\rho \frac{\partial^{2} u_{r}}{\partial t^{2}} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
E=\frac{1}{c}\left(\frac{\partial \mathbf{u}}{\partial t} \times \boldsymbol{H}\right), \quad h=\operatorname{rot}(\boldsymbol{u} \times \boldsymbol{H}) \tag{2.3}
\end{equation*}
$$

where \boldsymbol{u} is the mechanical displacement vector, \boldsymbol{E} the oloctric intensity vector and h is the perturbation in the magnetic intensity voctor.

The equations of electromagnetic field in vacuum are,

$$
\begin{align*}
& \left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) E^{*}=0 \tag{2.4}\\
& \left(\nabla^{2}-\frac{1}{c^{2}}\right. \tag{2.5}\\
& \left.\frac{\partial^{2}}{\partial t^{2}}\right) h^{*}=0 \tag{2,6}\\
& \operatorname{rot} E^{*}=-\frac{1}{c} \frac{\partial h^{*}}{\partial t} \tag{2.7}\\
& \operatorname{rot} h^{*}=\frac{1}{c} \stackrel{\partial E^{*}}{\partial t^{*}}, \quad \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}
\end{align*}
$$

where $\boldsymbol{E}^{*}, \boldsymbol{h}^{*}$ denote the values of quantitios \boldsymbol{E} and \boldsymbol{h}, respectively, in vacuum. For radial vibration, we have,

$$
\begin{align*}
& u_{\theta}=u_{z}=0, \quad u_{r}=U e^{\imath \omega t} \tag{2.8}\\
& e_{r r}=\frac{\partial U}{\partial r} e^{2 \omega t}, \quad e_{\theta \theta}=\frac{U}{r} e^{2 \omega t}, \quad e_{z z}=0 . \tag{2.9}
\end{align*}
$$

Also the other corresponding quantities are,

$$
\begin{array}{ll}
h_{r}^{*}=h_{\theta}^{*}=0, & h_{z}^{*}=h^{*}=V e^{2 \omega t} \\
H_{r}=H_{\theta}=0, & H_{z}=H_{1} \tag{2.10}\\
E_{r^{*}}=E_{\theta^{*}}=0, & E_{z^{*}}=E^{*}=W e^{i \omega t}
\end{array}
$$

where U, V, W are functions of r alone. The equation (2.3) gives,

$$
\begin{aligned}
E & =\frac{H_{1}}{n} \frac{\partial U}{\partial t}=\stackrel{i \omega}{r} H_{1} U e^{i \omega t} \\
h & =-\frac{H_{1}}{r} \frac{\partial}{\partial r}(r \dot{U})=-H_{1}\left(\frac{\partial U}{\partial r}+\frac{U}{r}\right) e^{i \omega t} .
\end{aligned}
$$

From (2.5) and (2.7) we get,

$$
\begin{gather*}
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{\omega^{2}}{c^{2}} V=0 \tag{2.12}\\
W=\frac{i c}{\omega} \frac{\partial V}{\partial r} . \tag{2.13}
\end{gather*}
$$

The boundary conditions on the surface are,

$$
\begin{align*}
\sigma_{r r}+T_{r r} & =T_{r r}^{*} & & \text { on } r=r_{1} \\
\sigma_{r r}+T_{r r} & =T_{r r} * & & \text { on } r=r_{2} \\
E & =E^{*} & & \text { on } r=r_{1} \tag{2.14}\\
E & =E^{*} & & \text { on } r=r_{2}
\end{align*}
$$

where $T_{r r}, T_{r r} *$ are Maxwell tensors in the shell and vacuum respectively and can be expressed as

$$
\begin{align*}
& T_{r r}=-\frac{H_{1}}{4 \pi} h=\frac{H_{1}^{2}}{4 \pi}\left(\frac{\partial U}{\partial r}+\frac{U}{r}\right) e^{2 \omega t} \\
& T_{r r}^{*}=-\frac{H_{1}}{4 \pi} h^{*}=-\frac{H_{1}}{4 \pi} V e^{1 \omega t} \tag{2.15}
\end{align*}
$$

while tho olastic stross tensor $\sigma_{r r}$ is expressible as,

$$
\begin{equation*}
\sigma_{r r}=\left(c_{11} \frac{\partial U}{\partial r}+c_{12} \frac{U}{r}\right) e^{i \omega t} \tag{2.16}
\end{equation*}
$$

3. Metifod of Soldtion

Case 1. Lot us assume,

$$
\begin{equation*}
\rho=\rho_{0}{ }^{r} \tag{3.1}
\end{equation*}
$$

where ρ_{0} is a constant. Tho equation (2.2) with the help of (2.1), (2.8), (2.9) and (3.1) becomes,

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial r^{2^{-}}}+\left(1+\frac{c_{12}-c_{21}}{c_{11}+H_{1}^{2} / 4 \pi}\right) \stackrel{1}{r} \frac{\partial U}{\partial r}-\frac{c_{22}}{c_{11}+H_{1}^{2} / 4 \pi}+\frac{U}{r^{2}}+\frac{\rho_{0} \omega^{2} U_{r}}{c_{11}+H_{1}^{-2} / 4 \pi}=0 \tag{3.2}
\end{equation*}
$$

Putting $U=r^{-\mathbf{d}} \boldsymbol{\xi}$ we get,

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial r^{2}}+\left(\frac{c_{12}-c_{21}}{c_{11}+H_{1}^{2} / 4 \pi}\right) \frac{1}{r} \frac{\partial \xi}{\partial r}-\frac{m^{2}}{r^{2}} \xi+k^{2} \xi r=0 \tag{3.3}
\end{equation*}
$$

where

$$
K^{2}=\frac{\rho_{0} \omega^{2}}{c_{11}+H_{1}^{2} / 4 \pi}, \quad m^{2}=\frac{1}{4}\left[\frac{4 c_{22}+2 c_{12}-2 c_{21}}{c_{11}+H_{1}^{2} / 4 \pi}-1\right.
$$

Putting $z=2 / 3 K r^{3 / 2}$ we get,

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial z^{2}}+\frac{1-\alpha}{z} \frac{\partial \xi}{\partial z}+\left(1-\frac{\lambda^{2}}{z^{2}}\right) \xi=0 \tag{3.4}
\end{equation*}
$$

where

$$
\alpha=\frac{2}{3}\left(1-\frac{c_{12}-c_{21}}{c_{11}+H_{1}^{2} / 4 \pi}\right)
$$

and

$$
\lambda^{2}=4 m^{2}
$$

Then the solution of (3.4) is

$$
\begin{equation*}
\xi=z^{a / 2}\left[A J_{n}(z)+B Y_{n}(z)\right] \tag{3.5}
\end{equation*}
$$

where $n^{2}=\begin{gathered}4 \lambda^{2}-\alpha^{2} \\ 4\end{gathered}, A, B$ are constants and J_{n}, Y_{n} are Bessel functions of first and second lind. Consequently, the solution of (3.2) is

$$
\begin{equation*}
U=r^{3 \alpha-2 / 4}\left[A_{1} J_{n}\left(\frac{2}{3} K r^{3 / 2}\right)+B_{1} Y_{n}\left(\frac{2}{3} K r^{3 / 2}\right)\right] \tag{3.6}
\end{equation*}
$$

where A_{1}, B_{1} are constants given by

$$
A_{1}=\left(\frac{2}{3} K\right)^{\alpha / 2} \cdot A, \quad B_{1}=\left(\frac{2}{3} K\right)^{\alpha / 2} \cdot B .
$$

Making use of recurrence formula,

$$
\begin{aligned}
& J_{n}^{\prime}(z)=J_{n-1}(z)-\frac{n}{z} J_{n}(z) \\
& Y_{n}^{\prime}(z)=Y_{n-1}(z)-\frac{n}{z} Y_{n}(z)
\end{aligned}
$$

$\sigma_{r r}, T_{r r}$ may be calculated with the help of (36). We have,

$$
\begin{align*}
\sigma_{r r}=r^{3 / 4(\alpha-2)}[& A_{1}\left\{K r^{3 / 2} c_{11} J_{n-1}\left(\frac{2}{2} K r^{3 / 2}\right)+\nu J_{n}\left(\frac{1}{3} K r^{3 / 2}\right)\right\} \\
& \left.+B_{1}\left\{K r^{3 / 2} c_{11} Y_{n-1}\left(\frac{2}{3} K r^{3 / 2}\right)+\nu Y_{n}\left(\frac{2}{3} K r^{3 / 2}\right)\right\}\right] e^{i \omega t} \tag{3.7}
\end{align*}
$$

where

$$
=\frac{4 c_{12}-(6 n-3 \alpha+2) c_{11}}{4}
$$

and

$$
\begin{align*}
& T_{r r}=\frac{H_{1}^{2}}{4 \pi} r^{3 / 4(\alpha-2)}\left[A_{1}\left\{K r^{3 / 2} J_{n-1}\left(\frac{1}{3} K r^{3 / 2}\right)+\frac{2-6 n+3 \alpha}{4} J_{n}\left(\frac{2}{3} K r^{3 / 2}\right)\right]\right. \\
&\left.B_{1}\left\{K r^{3 / 2} Y_{n-1}\left(\frac{2}{3} K r^{3 / 2}\right)+\frac{2-6 n+3 \alpha}{4} Y_{n}\left(\frac{8}{3} K r^{3 / 2}\right)\right\}\right] e^{i \omega t} . \tag{3.8}
\end{align*}
$$

From (2.11) and (3.6) we get,

$$
E=\frac{i \omega}{c} H_{1} r^{\left(\mathrm{s}^{\alpha}-2\right) / 4}\left[A_{1} J_{n}\left(\frac{(g)}{3} K r^{3 / 2}\right)+B_{1} Y_{n}\left(\frac{2}{3} K r^{3 / 2}\right)\right] e^{i \omega t} .
$$

The solution of (2.12) with conditions appropriate to the problem is,

$$
\begin{align*}
V & =C Y_{0}\left(\frac{\omega r}{c}\right) & & \text { for } r \geqslant r_{2} \\
& =D I_{0}\left(\frac{\omega r}{c}\right) & & \text { for } r \leqslant r_{1}, \tag{3.10}
\end{align*}
$$

where Y_{0} and I_{0} are Bessel functions of order zero. From (2.15) we get,

$$
\begin{array}{ll}
T_{r r}^{*}=-\frac{H_{1}}{4 \pi} C Y_{0}\left(\frac{\omega r}{c}\right) e^{i \omega t} & \text { on } r \geqslant r_{2} \tag{3.11}\\
T_{r r^{*}}=-\frac{H_{1}}{4 \pi} D I_{0}\left(\frac{\omega r}{c}\right) e^{i \omega t} & \text { on } r \leqslant r_{1}
\end{array}
$$

From (3.10), (2.13) and (2.10) we have,

$$
\begin{array}{ll}
E^{*}=i C Y_{1}\left(\frac{\omega r}{c}\right) e^{i \omega t} & \text { on } r \geqslant r_{2} \\
E^{*}=i D I_{1}\left(\frac{\omega r}{c}\right) e^{i \omega t} & \text { on } r \leqslant r_{1} .
\end{array}
$$

The boundary conditions (2.14) yields

$$
\begin{gather*}
A_{1}\left\{\theta_{1} r^{3 / 2} J_{n-1}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)+\theta_{2} J_{n}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)\right\}+B_{1}\left\{\theta_{1} r_{1}^{3 / 2} Y_{n-1}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)+\right. \\
\left.\theta_{2} Y_{n}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)\right\}+\frac{H_{1}}{4 \pi r_{1}{ }^{3 / 4(\alpha-2)}} \quad D I_{0}\left(\frac{\omega r_{r}}{c}\right)=0 \tag{3.13}
\end{gather*}
$$

where

$$
\begin{align*}
& \theta_{1}+K\left(c_{11}=\frac{H_{1}{ }^{2}}{4 \pi}\right), \quad \theta_{2}=\nu+\frac{H_{1}{ }^{2}}{4 \pi}(2-6 n+3 \alpha), \\
& A_{1}\left\{\theta_{1} r_{2}^{3 / 2} J_{n-1}\left(\frac{2}{3} K r_{2}^{3 / 2}\right)+\theta_{2} J_{n}\left(\frac{2}{3} K r_{2}^{3 / 2}\right)\right\}+B_{1}\left\{\theta _ { 1 } r _ { 2 } ^ { 3 / 2 } Y _ { n - 1 } \left(\frac{2}{3} K r_{2}^{3 / 2}\right.\right. \\
& \left.+\theta_{2} Y_{n}\left(\frac{2}{8} K r_{2}^{3 / 2}\right)\right\}+\underset{4 \pi r_{2}}{\stackrel{H}{\mathbf{3} / 4(\bar{\alpha}-2)}} C Y_{0}\left(\frac{\omega r_{2}}{c}\right)=0 \tag{3.14}\\
& A_{1} J_{n}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)+B_{i} Y_{n}\left(\frac{2}{3} K r_{1}^{3 / 2}\right)-\frac{C}{\omega H_{1} r_{1}^{(3 a-2) / 4}} D I_{1}\left(\frac{\omega r_{1}}{C}\right)=0 \tag{3.15}\\
& A_{1} J_{n}\left(\frac{2}{8} K r_{2}^{3 / 2}\right)+{\underset{1}{1}}^{Y_{n}}\left(\frac{(8}{3} K r_{2}^{3 / 2}\right)-\frac{c}{\omega H_{1} r_{2}{ }^{(8 \alpha-2) / 4}} C Y_{1}\left(\frac{\omega r_{2}}{c}\right)=0 . \tag{3.16}
\end{align*}
$$

Eliminating A_{1}, B_{1}, C, D from (3.13) to (3.16) wo obtain the frequency equation as,

$$
\begin{align*}
& {\left[\frac{H_{1} r_{1}}{4 \pi}{ }^{3 / 4(2-a)} I_{0}\left(\frac{\omega r_{1}}{c}\right)\right]\left[Y_{n}\left(\frac{2}{3} K r_{1}{ }^{3 / 2}\right)\right]+\left[\frac{c r_{1}{ }^{(2-3 a z) / 4}}{\omega I I_{1}} I_{1}\left(\frac{\omega r_{1}}{c}\right)\right]} \\
& \frac{\left[\theta_{1} r_{1}{ }^{3 / 2} Y_{n-1}\left(\frac{2}{\mathrm{~g}} K r_{1}{ }^{3 / 2}\right)+\theta_{2} Y_{n}\left(\frac{2}{9} K r_{1}{ }^{3 / 2}\right)\right]}{\left[\theta_{1} r_{1}^{3 / 2} J_{n-1}\left(\frac{2}{\mathrm{~g}} K r_{1}{ }^{3 / 2}\right)+O_{2} J_{n}\left(\frac{2}{\mathrm{~B}} K r_{1}{ }^{3 / 2}\right)\right]\left[\frac{c}{\left.\omega H_{1} r_{1}{ }^{(3 \pi-2) / 4} I_{1}\left(\frac{\omega r_{1}}{c}\right)\right]}\right.} \\
& -\left[\frac{H_{\mathbf{1}^{\prime}} r_{1}^{3 / 4(2-q)}}{4 \pi}\left(\frac{\omega r_{1}}{c}\right)\right] J_{n}\left({ }_{8}^{2} K r_{1}{ }^{5 / 2}\right) \\
& {\left[\frac{H_{1}}{4 \pi} r_{2}{ }^{3 /(2-\alpha)} Y_{0}\left(\frac{\omega r_{2}}{c}\right)\right]\left[Y_{n}\left(\frac{2}{8} K r_{2}{ }^{3 / 2}\right)\right]+\left[\theta \theta_{1} r_{2}^{3 / 2} Y_{n-1}\left(\frac{2}{3} K r_{2}^{3 / 2}\right)\right.} \\
& =\frac{\left.+\theta_{2} Y_{n}\left(\frac{2}{9} K r_{2}^{3 / 2}\right)\right] \frac{c}{\omega H_{1} r_{2}{ }^{(3 x-2) / 4}} Y_{n}\left(\frac{\omega r_{2}}{c}\right)}{\left[\underset{\left.\omega H_{1} r_{2}{ }^{(3 \Omega}=-2\right) / 4}{ } Y_{1}\left(\frac{\omega r_{2}}{c}\right)\right]\left[\theta_{1} r_{2}^{3 / 2} J_{n-1}\left(\frac{2}{3} K r_{2}^{3 / 2}\right)+\theta_{2} J_{n}\left(\frac{2}{9} K r_{2}^{3 / 2}\right)\right]} \\
& +\left[J_{n}\left(\frac{\mathrm{~g}}{\mathrm{~B}} K r_{2}^{\mathrm{a} / 2}\right)\right] \frac{H_{1}}{4 \pi r_{2}{ }^{3 / 4 \alpha-2)}} Y_{0}\left(\frac{\omega r_{2}}{c}\right) \tag{3.17}
\end{align*}
$$

Case 2. Let us assume,

$$
\begin{equation*}
\rho_{0}=\frac{\rho_{0}}{r} \tag{3.11}
\end{equation*}
$$

whore ρ_{0} is a constant. The equation (2.2) with tho help of (2.1), (2.8), (2.9) and (3.18) becomes,

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial r^{2}}+\left(1+\frac{c_{12}-c_{21}}{c_{11}+\frac{H_{1}^{2}}{4 \pi}}\right) \frac{1}{r} \partial U \quad \frac{\partial U}{\partial r}-\frac{c_{22}}{c_{11}+\frac{H_{1}^{2}}{4 \pi}} \frac{U}{r_{2}}+\frac{\rho_{0} \omega^{2}}{c_{11}+\frac{H_{1}^{2}}{4 \pi}} \frac{U}{r}=0 \tag{3.19}
\end{equation*}
$$

Putting $U=r^{-\mathbf{t}} \eta$ we get as in the previous oase,

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial r^{2}}+\frac{\left(c_{12}-c_{21}\right)}{c_{11}+\frac{H_{1}^{2}}{4 \pi}} \frac{1}{r} \frac{\partial \eta}{\partial r}-\frac{m^{2}}{r^{2}} \eta+K^{2} \frac{\eta}{r}=0 \tag{3.20}
\end{equation*}
$$

Putting $z=2 K r^{\mathbf{t}}$ we get,

$$
\begin{equation*}
\frac{\partial^{2} \eta}{\partial r^{2}}+\frac{1-\beta}{z} \frac{\partial \eta}{\partial z}+\left(1-\frac{\nu^{2}}{z^{2}}\right) \eta=0 \tag{3.21}
\end{equation*}
$$

where,

$$
\beta=\frac{3}{2}-\frac{c_{18}-c_{21}}{c_{11}+\frac{H_{1}^{2}}{4 \pi}}, \quad \nu^{2}=4 m^{2}
$$

The sclution of (3.21) is,

$$
\begin{equation*}
\eta=z^{\beta / 2}\left[A J_{n}(z)+B Y_{n}(z)\right] \tag{3.22}
\end{equation*}
$$

where A and B are constants and J_{n}, Y_{n} are Bessel funotions of order n. Consoquently the solution of (3.19) becomes,

$$
\begin{equation*}
U=r^{(3 \beta-2) / 4}\left[A_{1} J_{n}\left(2 K r^{\mathrm{d}}\right)+B_{1} Y_{n}\left(2 K r^{\mathrm{d}}\right)\right] \tag{3.23}
\end{equation*}
$$

where A_{1}, B_{1} are constants given by

$$
A_{1}=\left(\frac{1}{3} K\right)^{B / 2} A, \quad B_{1}=\left(\frac{1}{2} K\right)^{B / 2} \cdot B
$$

Then $\sigma_{r r}$ and $T_{r r}$ in this case may be calculated with the help of (3.23) as,

$$
\begin{align*}
\sigma_{r r}= & r^{3 / 4(\beta-6)}\left[A_{1}\left\{c_{11} K r^{\sharp} J_{n-1}\left(2 K r^{\sharp}\right)+\delta J_{n}\left(2 K r^{\mathbf{}}\right)\right\}\right. \\
& +B_{1}\left\{c_{11} K r^{\ddagger} Y_{n-1}\left(2 K r^{\ddagger}\right)+\delta Y_{n}\left(2 K r^{\sharp}\right)\right] e^{2 \omega t} \tag{3.24}
\end{align*}
$$

where,

$$
\delta=\frac{\beta-2 n-2}{4} c_{11}+c_{12}
$$

and

$$
\begin{align*}
T_{r r}= & \frac{H_{1}{ }^{2}}{4 \pi} r^{3(\beta-6) / 4}\left[A_{1}\left\{K r^{\sharp} J_{n-1}(2 K r)^{\frac{1}{4}}+\frac{\beta-2 n+2}{4} J_{n}\left(2 K r^{\mathrm{d}}\right)\right\}\right. \\
& \left.+B_{1}\left\{K r^{\mathrm{i}} Y_{n-1}\left(2 K r^{\mathrm{d}}\right)+\frac{\beta-2 n+2}{4} Y_{n}\left(2 K r^{\mathrm{d}}\right)\right\}\right] e^{i \omega t} \tag{3.25}\\
& E=\frac{i \omega}{c} H_{1} r^{(\beta-2) / 4}\left[A_{1} J_{n}\left(2 K r^{\mathrm{d}}\right)+B_{1} Y_{n}\left(2 K r^{\frac{1}{\mathrm{~b}}}\right)\right] e^{i \omega t} . \tag{3.26}
\end{align*}
$$

$T_{r r}{ }^{*}$ and E^{*} howover, remain the gme as in casc 1 . The boundary concdition (2 14) yiolds,

$$
\begin{gather*}
A_{1}\left\{\phi_{1} r_{1}{ }^{\ddagger} J_{n-1}\left(2 K r_{1}^{\mathrm{t}}\right)+\phi_{2} J_{n}\left(2 K r_{1}^{ }\right)\right\}+B_{1}\left\{\phi_{1} r_{1}^{\mathbf{i}} Y_{n-1}\left(2 K r_{1}^{\mathrm{i}}\right)+\phi_{2} Y_{n}\left(2 K r_{1}^{\mathrm{i}}\right)\right\} \\
+\frac{H_{1}}{4 \pi} r_{1}^{3(6-\beta) / 4} D I_{0}\left(\frac{\omega r_{1}}{c}\right)=0 \tag{3.27}
\end{gather*}
$$

where,

$$
\begin{aligned}
& \phi_{1}=\left(c_{11}+\frac{H_{1}{ }^{2}}{4 \pi}\right) K, \quad \phi_{2}=\delta+\frac{\beta-2 n+2}{4}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{H_{1}}{4 \pi} r_{2}{ }^{3(6-\beta) / 4} C Y_{0}\left(\frac{\omega r_{2}}{c}\right)=0 \tag{3.28}\\
& A_{1} J_{n}\left(2 K r_{1}{ }^{\mathbf{}}\right)+B_{1} Y_{n}\left(2 K r_{1}{ }^{\mathbf{}}\right)-\frac{c}{\omega H_{1}}{ }^{r_{1}}{ }^{(2-\beta) / 4} D I_{1}\left(\frac{\omega r_{1}}{c}\right)=0 \tag{3.29}\\
& A_{1} J_{n}\left(2 K r_{2}^{\mathrm{d}}\right)+B_{1} Y_{n}\left(2 K r_{2}^{\mathrm{d}}\right)-\frac{c}{\omega H_{1} r_{2}^{(\beta-2) / 4}}-\sigma Y_{1}\left(\frac{\omega r_{2}}{c}\right)=0 .
\end{align*}
$$

Eliminating A_{1}, B_{1}, C and D from (3.27), (3.28), (3.29) and (3.30) we get the frequency equation as,

$$
\begin{align*}
& {\left[\begin{array}{cc}
H_{1} & \left.r_{1}^{(0-\beta) / 4} I_{0}\left(\frac{\omega r_{1}}{c}\right)\right]\left[Y_{n}\left(2 k_{1} r^{H}\right)\right]+\left[\frac{c}{\omega H_{1}}{ }^{-4 \pi} r_{1}^{(2-\beta) / 4} I_{1}\left(\frac{\omega r_{1}}{c}\right)\right]
\end{array}\right.} \\
& \left\lfloor\phi_{1} r_{1}{ }^{4} Y_{n-1}\left(2 K r_{1}{ }^{\mathbf{}}\right)+\phi_{2} Y_{n}\left(2 K r_{1}{ }^{\mathbf{1}}\right)\right] \\
& {\left[\phi_{1} r_{1}^{1} J_{n-1}\left(2 K r_{1}^{\mathrm{i}}\right)+\phi_{2} J_{n}\left(2 K r_{1}^{\mathrm{i}}\right)\right]\left[\begin{array}{c}
\left.\stackrel{c}{\bar{\omega} \overline{H_{1}}} r_{1}^{(2-\beta) / 4} I_{1}\left(\frac{\omega r_{1}}{c}\right)\right]
\end{array}\right.} \\
& +\left[\frac{H_{1}}{4 \pi} r^{r_{1}(0-\beta) / 4 I_{0}}\left(\frac{\omega r_{1}}{c}\right)\right] J_{n}\left(2 K r_{1}{ }^{1}\right) \\
& {\left[\frac{H_{1}}{4 \pi} r_{2}^{(\beta-\beta) / 4} Y_{0}\left(\frac{\omega r_{2}}{c}\right)\right]\left[Y_{n}\left(2 k r_{2}^{\mathrm{t}}\right)\right]-\left[\phi_{1} r_{2}^{\mathrm{t}} Y_{n-1}\left(2 K r_{2}^{\mathrm{i}}\right)+\phi_{2} Y_{n}\left(2 K_{2} r^{\mathrm{r}}\right)\right]} \\
& {\left[\frac{c}{\omega I_{1}} r_{2}^{(2-s \beta) / 4} Y_{1}\left(\frac{\omega r_{2}}{c}\right)\right]} \\
& {\left[\frac{c}{\omega H_{1}} r_{2}^{(2-3 \beta) / 4} Y_{1}\binom{\omega r_{2}}{c}\right]\left[\phi_{1} r_{2}{ }_{2}^{\mathrm{t}} J_{n-1}\left(2 K r_{2}^{\mathrm{t}}\right)+\phi_{2} J_{n}\left(2 K r_{2}{ }^{\mathrm{t}}\right)\right]} \\
& -\left[J_{n}\left(2 K r_{2}{ }^{\mathbf{4}}\right)\right] \frac{H_{1}}{4 \pi} r_{2}^{(1-D) / 4} Y_{0}\left(\frac{\omega r_{2}}{c}\right) . \tag{3.31}
\end{align*}
$$

Ruflerenoms

Chatterjee D. 1969 Bull. Cal. Malh. Soc. 61, 121
Kailiski S. (1983a) Proc Vibr, Prob. 4
Love A. E. H. (1944) A Treatise on Mathematical Theory of Elasticity, Dover Pub. (C.U.P.) Yadava B. (1968) Indian. J. Phys. 42, 643

