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Radial vibration of an aeolotropic cylindrical shell of
varying density in a magnetic field

SURYA NARAIN AND B. G. VErMa
Department of Mathematics, University of Gorakhpur, Gorakhpur.

(Received 4 December 1971)

In this paper, we have discussed the problem of vibration of eylindrical
shell of aclotropio material of variable density for iwo different cases—
first, when the density varies linoarly and second, when it varies inversely
as the radius vector.

1. INTRODUCTION

Yadava (1968) obtained the solution of the problem of vibration of a cylindrical
sholl in a magnetic field, tho material of the shell being aeolotropic and density
uniform. In this paper, the discussion has been extended to the problem of vi-
bration of a cylindrical shell of aelotropic material of variable density. Two
cases have boon considered. Tho fiirst, when the density varies linearly and the
second, when it varies inversely as the radius vector. Such problems of magneto-
elastic vibrations are of much importance in viow of increasing investigations on
radiation of olectromagnetic energy into the vacuum adjacont to magnoto-elastic
bedies.

2. THE ProBLEM, FUNDAMENTAL EQUATIONS AND BouNDARY CONDITIONS

Wo considor an aeolotropic, perfectly conducting cylindrical shell of inner
and outor radii », and 7, respectively and the space outside the shell to be vacuum.
We consider the boundary of the shell to be mochanically stress free. Initially
there exists an axial magnetic field of intensity H in the shell. Then the consti-
tutive relations for aeolotropic bodios in eylindrical coordinates (r, 6,z) as given
by Love (1944) are,

Orr = Cp1lrr—+Cia€ptCiglaz
Ogo = Canrr+Caglgy+Cosla: - (20)
2z = Cyylrr—tCyafggt-Canlez

Whero oyy, 0gg T2z 8NA ey, egg> €2z 8re the components of stress and strain res-
pectively. The equations of magneto-elasticity for a perfect conductor with
unit, permeability as deduced by Kailiski (1963) are,
0 Orr—0, 1 _ . O,
E(”"H'%—"'FZ% frot rot(ux H)IXH = p—5 (2.2)
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E=2(2xH), h=rottuxH) o (23)

where y is the mechanical displacement vector, E the olootric intensity vector
and h is the perturbation in the magnetic intensity voctor.

The oquations of electromagnetic field in vacuum are,

(Vz ; atz) h* =0 @)
rob E* — —% ‘%’ 26)
rol h* _JJ OE* | ge - §;+% 2 @)

where E*, h* denote the valuos of quantities E and F, respectively, in vacuum.
Tor radial vibration, we have,

Up = Uz = 0, uy = Ue®t (2.8)
o = —%g—c""‘ Con = % @98, gy = 0. 2.9)

Also the other corresponding quantities arc,

hr* p— ho* = 0, hz# p— h* — Velml
H, =H, =0, H,=H, (2.10)
E* = B* =0, E* = B* = Weiot

where U, V, W are functions of » alone. Tho equation (2.3) gives,

H, U
P

E= =19 g ye

b= _H:l (TU) - —Hl( oUu +U) €tk

From (2.5) and (2.7) we get,
2V 1 v

AL ar+_=V=° . (212)
=V . (218)

w Or



Radial Vibration etec. 289

The boundary conditions on the surface are,

. Ger+Tor = Ty onr=r
Orr+-Trr = Try* On 7T =r1y
(2.14)
E = E* onr=r
E = E* on r=r,

where Ty, Tr/* are Maxwell tensors in the shell and vacuwm respectively and
can be expressed as

— _111 — 1912 BL C 1f
Tey = o h_T(b?—}-T)e
H H
*— _T1pe — _ Hhpaee ..
T,y I h I e . (2.15)

while tho clastic stross tensor oy, is expressible as,

v U\ e
Orr = (011‘-6’;; “[‘cu‘r’) elot (2.16)
3. MB=BTHOD OF SOLUTION
Case 1. Let us assume,
P =pd - (30)

where p, is & constant. Tho equation (2.2) with the help of (2.1), (2.8), (2.9) and
(3.1) becomes,

) (1 _"li—iL)! W _ e U poUr
or? cy+Hl3dm i v dr oyt HpEAw ' 2 oy --HPdw
(3.2)
Putting U = r# we get, .
P (oo |1 06 mP, .. g .. (33
6r’+(cu+H1’/41r) r or r: e 3)
where
1o P e L[ doyd20,—20y
= ot B ™ T & [ 0+ H oA
Putting z = 2/3Kr¥/? we get,
02 1—a d¢ _a =0 3.4
Tt at(1-x) =0 @4
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where
= _ Cn—%
o= (1 oy Hy?f4m )
and
22— 4m?
Then the solution of (3.4) is
& = 22{AJ (2)-+ BY ()] .. (35)

4A%—o2
4
and second kind. Consequently, the solution of (3.2) is

where n? = , A, B are constants and J,, ¥, are Bessel functions of first

U = 19244, (§K1¥*)+ B, ¥ ,({ Kro3)] 36)
where A,, B, are conslants given by
A, = (§K)"2.4, B;=(§K)2.B.

Making use of recurrence formula,
J@) = Juae)= 5 Jule)
, n
/@) = Yos)— o Yolo)

orr, Tyr may bo calculated with the help of (3 6). Wo have,

Oy = r3ACDLA (K201, J o (FHrY2) 4w oK)}

+ BRI 0y Yo o(JKI) 4T (G E et 37)
where
, = 401,—(6n—30+-2)cyy
— dory— On—er 2y
and
Typ = Ii{i 13- [ A (K792, (] Kra/2)+2_62—+3“ J(§Kr2)]
BErnY, (4K + =0t y gy gro,

4
. (38)
From (2.11) and (3.6) we get,

E= icﬂﬂlr"“'2”4[A1J“(§Kr”")+BIY,,(iKrW’)] e, . (39)



Radial Vibration etc. 291

The solution of (2.12) with conditions appropriate to the problem is,

‘ v = oy, () forr > r,,
(3.10)
r
= DI, (‘%) forr < ry,
where ¥, and I, are Bessel functions of order zero. From (2.15) we get,
H
*»_ {0t
1, =1 ( )e"’ onr>r (3.11)
H
Th¥=—-2 = Plo (~c—>8"”‘ onr<n
From (3.10), (2.13) and (2.10) we have,
E* = iCY. (—~)e"‘" on 7z,
E* = DI, ( )e"‘" on r < r.
The boundary conditions (2.14) yields
AfOyr T o (3K, 400 o(§Kr o)} B {0y, V2 ¥ no(§R7,*2)+
H 7!
O Yo} K ey DI,(“) =0
where (3.13)
_ 2 ) H (2—6nt+3a
0+ K (o= ), = (),
A,{67y™ 2 o (§K73"/2)+ 0o (3K D)} + By{O1rg" 2 Y oy (K72
H. wr,
HOYLAER o ke oy OF (47 )= 0 (3.14)
s 2 C soma DL (422) =0 (3.16)
1J,.(§ -K‘rl )+B‘Yn(§K71 )_ H ” @o—2)/a 1 = '

AT BRI+ B Y AR~ e O, (42 ) =0, .. @26)
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Eliminating 4,, B;, C, D from (3.13) to (3.16) wo obtain the frequency equation
as,

Hr /a2 (“’"1 ] [ o ] [ cry 238 wry )]
[ Vgkr® [+ om b (2

[ Oy Y gy (320, Y (3K 1,2) ]

[0yry**T oy (3K 7,¥2) 0, (zKrla/z)]l- s (az—s)/aIl( w:x) ]

4(2—¢
_[Hareee

100 22) e

[fntna-ay,( 27) ][ Yokren) | + [ omdn T, gErom

wry

O3 | S Yo 452
[w E;a%ﬂ:z)]d ¥, ( wTr, ) ] [ O3 (R K72 2)+ 0,0 o (3 K% ]

+[J,.(%Krs’/’)]ﬁ§}.u_n Yu( u:z) o (3.17)

Case 2. Lel us assume,

Po = —”P e (3.11)

whore p, is & constant. The aqua,tlon (2.2) with tho help of (2.1), (2.8), (2.9) and
(3.18) becomes,

U Cp—0yn \ 10U Caa v pow® U _

H,2 | ror HpE r H,? . (3.19
ot 4o cu+ ﬁ 2 11+ 4" (3.19)
Putting U = r—¥y we get as in the previous case,
9% | (613—Ca) 1 3y _ m? 7
Hx T sz 7 or P n—l-K’ L=0 «. (3.20)
ont 4 —
Putting z = 2Krt we get,
P 1By (1 =0 3.21
B +—=" 5 + . (3.21)

where,

A= %_ EL;’;!’_, 2 = dme,

e+ —471;
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The sclution of (3.21) is,
9 = PAJT(2)+BY ()] . (322)

where A and B are constants and J,, ¥, are Bessel funotions of order n. Conso-
quently the solution of (3.19) becomes,

U =1~ 4 7, (2Krt)+B, Y ,(2Krb)] . (323)

where 4,, B, are constants given by
A, = (}Ey24, B, = (}K).B.

Then oy and Ty in this case may be calculated with the help of (3.23) as,
Oy = rVUE-O[4 (¢, Kr¥J, _,(2Kr})+6J,(2Kri)}
+Bi{cy Kr¥Y 1 (2Krt)+0Y ,(2Krd)] et . (3.24)

where, Ii_\_zgﬂ ,,2 011+012

and

H? —ont2 .,
Tpe = 1 wou-ont [Al{KriJ,,_l(2Kr)l+_ﬂ~ E’Li‘_J,,(zma)}
+B1{Kr*Y,,_1(2Kri)+—ﬂ:24ni Y,,(z_rm)}]e-'wt . (3.25)

BE= "?“’le“"-”"[A,.l,,(zKri)+B,Y,,(2Kr*)] giut, . (3.26)

Ty* and E* howovor, remain the gme as in case 1. The boundary concdition
(2 14) yiclds,

APt 12K )| po n(2Kr - B{pyrid Yoy (2K 7y ¥) +6, Y (2K 1)}

+ 2 H1 7,80-8Y4 DI ( u;ﬁ) =0 . (327)
where,
_ He ﬂ—2n+2
¢ = (011+E)K’ fy =0+ ——
A{pyr o s(2Krgh) +Po ..(2Kra‘)}+31{¢fn*Yn-1(2Kfz*)+¢z Y, (2Kr,})
— ﬂ 8(6-58)/4 wra \ _
Tiry oy.,( . ) 0 . (3.28)
A,J,2Kr3)+B,Y (2Kr})— .»LHI r@-Blpr, ( "‘Tﬁ) =0 .. (3.20)
Nl wr ) . (4
Ay (2 )+ BT, (2Kry B OY,( ’ ) 0. o (430
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Eliminating 4;, B;, ¢ and D from (3.27), (3.28), (3.29) and (3.30) we get the fre.
quency equation as,

[ e, 2] [} o, ()]

[ G147, ((2Kr )+ ¢, Y ,(2K: 7'1‘)]

[0 0] [ P, (2]

{2 e [ 5)] vk

[ rieomr, ()| Futthri) |~ [Bind FucsoRriH 8, T 2K |

()

wily

e ) [t )

1

- [J,,(2Krgi)] 4%1.. ry oo Yo( ). . (331)

(4
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