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In this paper, we have discussed the problem of vibration of cylindrical 
shell of aolotropio material of variable density for two different cases— 
first, when the density varies linearly and second, when it varies inversely 
as the radius vector.

1. I ntboditction

Yadava (1968) obtained the solution of the problem of vibration of a cylindrical 
shell in a magnetic field, the material of the shell being aeolotropic and density 
uniform. In this paper, the discussion has boon extended to the problem of vi- 
biation of a cylindrical shell of aelotropic material of variable density. Two 
cases have boon considered. The fiirst, when the density varies linearly and the 
second, when it varies inversely as the radius vector. Such problems of magneto­
elastic vibrations are of much importance in view of increasing investigations on 
radiation of electromagnetic energy into the vacuum adjacent to magneto-elastic 
bodies.

2. T h e  P b o b le m , F u n d a m en t a l  E q uatio ns and  B o u n d a r y  Co nd it ions

Wo consider an aeolotropic, perfectly conducting cylindrical shell of inner 
and outer radii r̂  and r,̂  respectively and tlie space outside the shell to be vacuum. 
We consider the boundary of the shell to be mechanically stress free. Initially 
there exists an axial magnetic field of intensity H  in the shell. Then the consti­
tutive relations for aeolotropic bodies in cylindj'ical coordinates {r, d, z) as given 
by Love (1944) are,

Indian J. Phya, 47p 2 8 7 -2 9 4  (1 9 7 3 )

O'rr =  CiiC,-r-l-Ci2600+Ci3ear2

( T z t  = -  C 3 iC rr-1-032^98 +  ̂ 33^22

... (2.1)

where o-fr, (Tza and Crr» ĉ z are the components of stress and strain res­
pectively. The equations of magneto-elasticity for a perfect conductor with 
unit permeability as deduced by Kailiski (1963) are,

<Trr~(TiM + ^  [rotrot(axH )]xf/ =47T
(2 .2)
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£=y(^x//). fc = rot(uxH) . . .  (2.3)

whore u is the mechanical displaccnient vector, £  the electric intensity vector 
and h is the perturbation in the magnetic intensity vector.

The equations of electromagnetic field in vacuum are,

r o t £ »  =  -  A
c dt

rot

(2.4)

(2.5)

(2 .6) 

(2.7)

where E*, h* denote the values of quantities E  s,nd h, respectively, in vacuum. 
For radial vibration, we have,

Uq =  Uz — 0, Ur =  Ue"“* (2.8)

e_- — ptcat g =  E  e'“ », e „  =  0.
r (2.9)

Also the other corresponding quantities arc,
hr* =- =  0, hz* =  h * =  Fe‘ »«

H r  = H q = 0 , B z  =  H ^ (2.10)

E r *  =  Eq* =  0, E z *  ^ E * =

where U, V, W are functions of r alone. The equation (2.3) gives,

I S  =  ^

From (2.5) and (2.7) we get,

dW  .1  dV__  . ^ 4 . ^ V  =  0
dr® r dr r.a

PT =  ~  ™
CO dr ’

(2,12)

(2.18)
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... (2.14)
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The boundary eonditions on the Burface are,

 ̂ o>r+^iT =  Trr* on r =

(Trr~\-Trr =  Tj-r* on r —

E =  E* on r =

E =  E* on r =  rg

where Trr, Trr* are Maxwell tensors in the shell and vacuum respectively and 
can be expressed as

47t 477 ' or r /

Trr*= / ! * = : - &  Fe'®«47T 477

Avhile the elastic stress tensor <7fr is expressible as,

<r„ =  ) e<“ «

3. M ethod  oe S olution  
Case 1. Let us assume,

(2.15)

(2.16)

(3.1)
where is a constant. The equation (2.2) with the help of (2.1), (2.8), (2.9) and 
(3.1) becomes,

dr̂
I / l  I __^12 ^21 \ i  __  ____^ 2 _________ l_ _ ^  I____ Pn*̂'̂ Ur _  Q

\ ^Ci i4-Hi’“/4t7 / r dr ^  r̂  ^

I?utting XI =  we get,

'^ 4 -  ) L  =  0

(3.2)

(3.3)

where

=  — 4cga+2Cia—2c8i
c„+^,=*/477^ ^  4 L 'Ca+ifx /̂477^

Putting z =  2j3Kr^^  ̂ we get,

dz^^— T z^ [^   ̂ ’

5

(3.4)
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(3.5)

(3.6)

A® =

Then the solution of (3.4) is

whore ^ , -B arc constants and J„, are Bessel functions of first4-
and second kind. Consequently, the solution of (3.2) is

where A-y, By are constants given by

Ay =  {\Kfi\A, By =  {lK fi\B ,

Making use of recurrence formula,

Y^[z) =  y„(s)

(Trr, Trr may bo calculated with the help of (3 6). Wo have, 

where

(3.7)

4ci.2—(6r?.—3a+2)cii 
4

and
, 2—6n+3a

_ t e + 3 a

... (3.8)
From (2.11) and (3.0) we get,

... (S'9)



... (3.10)
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Tho solution of (2.12) with conditions appropriate to the problem is,

r = 0 r .  f o r r > r „

^  ( t ) f o r r < r i ,

where Yq and I q are Bessel functions of order zero. From (2.16) we get,

3’rr* =  o n r > r ,

From (3.10), (2.13) and (2.10) we have.

on r <  rj.

E* on r C  r..

The boundary conditions (2.14) yields

JTr,»/»)}+ =  0

where

/» irlr  ̂  ̂ I 2~67^+3a \e , +  K [ c ^ = - ^ ) .  0, =  y + — [ -  - 4 — j.

(77. ( =  0

^xJ»(S D I , { ^ )  =  0

0 7 ,(  ) =  0.

(3.11)

(3.13)

(3.14)

(3.1B)

(3.16)



Eliminating Ai, C, D from (3.13) to (3.16) wo obtain the frequency equation 
as,

4 ' ^ n i i K r m h ^ - ^ i . - , ,  r „ ( - ^ )
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Case 2. Let us assume,
Q — Po Po -  -

(3.17)

(3.11)
whore is a constant. The equation (2.2) with tho help of (2.1), (2.8), (2.9) and 
(3.18) becomes,

d^U
dr̂ + /  I I \

V  ^ ) '
du_

r dr
âa ^  I ___ ^ _ o

H  ̂ r ' H  ̂ r
« u +  Cii+ 4 ^

Putting U = r~̂ ij we got as in the previous case,

I (̂ la âi) 1 _0
dr'̂  ~̂  . r dr r̂  r

CiiH- 477

Patting z =  2Kr^ we get.

where.

a*, , W ? ? + / i _ ? l L  =  o 
* d z^\  z ^ r

3 _ C j s ^ ^  v» =  4m».

.. (3.19)

(3.20)

(3.21)

2 c®“ +  47T
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The solution of (3.21) is,
... (3.22)

where A  and B  are constants and </„, Yn are Bessel functions of order n. Conso- 
quently the solution of (3.19) becomes,

V =  ... (3.23)

where A ,̂ are constants given by
Aj_ =  {\Kyi^A, B  ̂=  {\Kfi\B.

Then a-fr and Trr in this case may be calculated with the help of (3.23) as, 
o-rr =  r3/*‘^-«)[^i{Cn^rU„_,(2Zrl) +  5JJ2Zri)}

+B^{c^^KriY^_^{2Kr^ndY^[2Kr^)-\ c-* ... (3.24)

where, 8 =  .? c^+Cia

and

Trr =  J„(2Jrr‘ ) j

+^ i|gr*r„_i(2 .g»'t)+  r „ (2 g r l ) j ]e '“ ‘ ... (3.25)

E =  “̂ H/^-^'><\A^J„(2Kri)+B^YJ,2Kri)\ e‘ “ '. c
(3.26)

^fr* and JS?* however, remam the gme as in case 1. The boundary concdition 
(2 14) yields,

+  M l  r, D i J  \ =  0
An \ c /

... (3.27)

where.

=  («U + ^  )^> </>, =  « +

î{<4i>-«‘ ‘^«-i(2-ff»-**)+?Si,J,(2.ffr,»)}+S,{K»r._i(2^.-,*)+?S,r.(2i-r,»)

_  ^  r ,« ‘ -»>'*(7ro| ^  ) =  0 ... (3.28)

^ i J „ ( 2 Z r i » ) + B i r , ( 2 & , » ) - ^ ^ f » - « / ‘ D 7 , = 0  . . .  (3.29)

4 ,J „(2X r,* )+ S ,r„(2Z r,»)— ■ o r . ( ^ . ) ... (4.30
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Eliminating Â , G and D from (3,27), (3.28), (3.29) and (3.30) we get the fre- 
quency equation as,

[ î>-i*I'«-i(2JCrit)+<5,r,(2ii:r,»)] 

[?S»V-/«-i(2Jrrii)+^./„(2jrr,»)] ( ^ ) ]

+  [ 5  J n W )

[ S i  j][r„(2ir,l)]-[^ir,trU2ir>z*)+^,F„(2ii:,r*)]

~[,/„(2i:fs«)] A  r^ 'W 'o r .f ... (3.31)
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