12 research outputs found

    Plotting a future for Amazonian canga vegetation in a campo rupestre context

    Get PDF
    This work was supported by CNPq project (455505/2014-4) to all authors; The MPEG/ITVDS/FADESP Term of Agreement (01205.000250/2014-10); DCZ – CNPq productivity grant; NFOM - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (BR- 88887/130640/2016-00).In order to establish effective conservation strategy, drivers of local and regional patterns of biodiversity need to be understood. The composition of local biodiversity is dependent on a number of factors including evolution and redistribution of lineages through dispersal and environmental heterogeneity. Brazilian canga is characterised by a ferrugineous substrate, found both in the Iron Quadrangle of Minas Gerais and in the Carajás mountains in Amazonia. Canga is one of several specialised habitat types comprising Brazilian campo rupestre, a montane vegetation found within or adjacent to several major Brazilian bioregions, including the Atlantic Forest and Amazonia, with exceptionally high levels of diversity and endemism arising from both history of dispersal and environmental variation. In order to inform biodiversity conservation for canga, and more broadly for campo rupestre, we performed floristic and phylogenetic analyses investigating affinities between 28 sites on different substrates (canga and quartzite) and geographic locations (Carajás, Pará [Amazonia]; Cadeia do Espinhaço, Minas Gerais; Chapada Diamantina, Bahia). Through analysis of 11204 occurrences of 4705 species of angiosperms, we found that Amazonian Carajás canga plant communities formed a cohesive group, distinct from species assemblages found in Eastern Brazil (Minas Gerais, Bahia), either on canga or quartzite. The phylogenetic megatree of species across all sites investigated shows associations between certain clades and Amazonian canga, with few shared species between the Amazonian Carajás and Eastern Brazil sites, while the floristic comparison shows high levels of heterogeneity between sites. The need for reserves for Amazonian Carajás canga has been recognized and addressed by the creation of a national park. However, current sampling does not provide sufficient reassurance that the canga areas now benefitting from full legal protection adequately represent the regional canga flora.Publisher PDFPeer reviewe

    Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil

    No full text
    ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. They are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that differ from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. This study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. The richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in different proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that floristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil

    Edaphic Endemism in the Amazon: Vascular Plants of the canga of Carajás, Brazil.

    No full text
    Amazonia is one of the most diverse biomes worldwide, and, as well as luxuriant forest, it includes mountain areas which, despite their small surface area, display fascinating endemism. In these regions, the specificity of edaphic factors is mirrored by a highly specialised, isolated flora adapted to survive adverse conditions. The Serra dos Carajás in the Brazilian state of Pará is one of world’s largest iron ore reserves. Known locally as , this ironstone formation occupies an area of 115.9 km , and supports of vegetation on outcrops that are mostly in the Floresta Nacional de Carajás (FLONA of Carajás) and Parque Nacional dos Campos Ferruginosos (PNCF). The recent publication of the Flora of the s of Carajás lists 856 species of seed plants and 186 species of ferns and lycophytes. This project assessed the endemic species growing in the region, and further expeditions guided by SDM were carried out in order to ascertain their distribution outisde the area. Departing from an initial list of 58 putative endemics, the final list comprises 38 species of vascular plants (c. 4% of the local flora). These are distributed in 31 genera and 22 families, including three monotypic genera: (Rubiaceae), and (Asteraceae). From these, 24 are classified as Rare Species for Brazil and seven as Highly Restricted Endemic (EEO A Amazôna é um dos mais diversos biomas do mundo e inclui, bem como florestas luxuriantes, regiões montanhosas que, apesar de ocuparem uma área superficial relativamente pequena, apresentam endemismo fascinante. Ali, a especificidade de fatores edáficos é espelhada por uma flora isolada e altamente especializada para sobreviver em condições adversas. A Serra dos Carajás, no estado do Pará, é uma das maiores reservas de minério de ferro do mundo. Conhecidas localmente como cangas, as áreas de minério exposto ocupam uma área de 115,9 km , sobre as quais a vegetação de campo rupestre ocorre. A maioria destes afloramentos está incluída na Floresta Nacional de Carajás (FLONA of Carajás) e no Parque Nacional dos Campos Ferruginosos (PNCF). A publicação recente da Flora das cangas de Carajás listou 856 espécies de fanerógamas e 186 de samambaias e licófitas. Este projeto categorizou as espécies endêmicas da canga na região e valeu-se de expedições a áreas circunvizinhas delineadas por SDM, buscando estabelecer o endemismo dessas espécies fora da área contemplada na Flora. Partindo de uma lista inicial com 58 possíveis endêmicas, a lista final inclui 38 espécies de plantas vasculares (c. 4% da flora local). Estas são distribuídas em 31 gêneros e 22 famílias, incluindo três gêneros monotípicos: (Rubiaceae), e (Asteraceae). Destas, 24 foram classificadas como plantas de distribuição restritas no Brasil e sete como endêmicas altamente restritas (EE

    Unraveling the plant diversity of the Amazonian canga through DNA barcoding.

    No full text
    Abstract The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF‐atpH, psbK‐psbI, trnH‐psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás

    Growing knowledge: an overview of Seed Plant diversity in Brazil

    No full text
    corecore