114 research outputs found

    Students’ choice of occupational therapy as a second degree

    Get PDF
    There has been little research in the United Kingdom into the recruitment of occupational therapy students. This study focused on one aspect and surveyed students already holding a degree, in order to ascertain the factors that attracted them to occupational therapy and why they chose a further 3-year degree course in preference to postgraduate alternative routes to qualification. Sixty-four students, holding degrees predominantly in the human sciences and the arts, were motivated to study occupational therapy at Brunel University through a desire to obtain a vocational qualification and to pursue a career that helped others and offered variety and personal satisfaction. The majority of the students learned of the profession through working in health and social care environments, and chose to study at Brunel University owing to its location in London and its reputation for attracting mature students. Although 90% of the students had been aware of the 2-year accelerated postgraduate diplomas in occupational therapy, more than a third preferred to undertake a 3-year degree course because it allowed more time for study and part-time employment. The need to target recruitment at school leavers, graduates in related degrees and those already working in health or social care was identifie

    Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus.

    Get PDF
    Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed-1 ribosomal frameshift (1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that-1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3= RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient-1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses.Work in the A.E.F. lab is supported by the Wellcome Trust [088789], [106207]; and the Biotechnology and Biological Sciences Research Council [BB/J007072/1]. L.F. is supported by a Biotechnology and Biological Sciences Research Council PhD studentship.This is the final published version. It first appeared at http://jvi.highwire.org/content/early/2015/06/05/JVI.01043-15.abstract

    Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in Theilovirus.

    Get PDF
    Funder: Helmholtz AssociationFunder: Royal SocietyThe 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed -1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem-loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting

    Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction

    Get PDF
    Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes

    Modulation of Viral Programmed Ribosomal Frameshifting and Stop Codon Readthrough by the Host Restriction Factor Shiftless

    Get PDF
    The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures

    Protein-directed ribosomal frameshifting temporally regulates gene expression

    Get PDF
    Programmed −1 ribosomal frameshifting is a mechanism of gene expression, whereby specific signals within messenger RNAs direct a proportion of translating ribosomes to shift −1 nt and continue translating in the new reading frame. Such frameshifting normally occurs at a set ratio and is utilized in the expression of many viral genes and a number of cellular genes. An open question is whether proteins might function as trans\textit{trans}-acting switches to turn frameshifting on or off in response to cellular conditions. Here we show that frameshifting in a model RNA virus, encephalomyocarditis virus, is trans\textit{trans}-activated by viral protein 2A. As a result, the frameshifting efficiency increases from 0 to 70% (one of the highest known in a mammalian system) over the course of infection, temporally regulating the expression levels of the viral structural and enzymatic proteins.This work was supported by Wellcome Trust grants (088789) and (106207), UK Biotechnology and Biological Research Council (BBSRC) grant (BB/J007072/1) and a European Research Council (ERC) European Union's Horizon 2020 research and innovation programme grant (646891) to A.E.F.; by BBSRC grant (BB/L000334/1) and UK Medical Research Council grant (MR/M011747/1) to I.B.; by a BBSRC PhD studentship to L.K.F.; and by a Wellcome Trust PhD scholarship to J.D.J
    corecore