1	Programmed -2/-1 Ribosomal Frameshifting in Simarteriviruses: An Evolutionarily Conserved
2	Mechanism
3	
4	Yanhua Li ^{a,b} , Andrew E. Firth ^b , Ian Brierley ^b , Yingyun Cai ^c , Sawsan Napthine ^b , Tao Wang ^{a,d} ,
5	Xingyu Yan ^a , Jens H. Kuhn ^c , Ying Fang ^a #
6	
7	^a Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan,
8	Kansas, USA
9	^b Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP,
10	United Kingdom
11	^c Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious
12	Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
13	^d Yangzhou University, Yangzhou, P. R. China
14	
15	Running title: -2/-1 PRF in Simarteriviruses
16	
17	#Address correspondence to Ying Fang, <u>yfang@vet.k-state.edu.</u>
18	

19 ABSRACT

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive 20 21 and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nsp2TF and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein nsp1ß and 22 23 cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in eleven simarteriviruses. 24 However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven 25 simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic 26 fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and 27 universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro 28 translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. 29 Using SHFV reverse genetics, we confirmed critical roles of nsp1^β, slippery sequence and C-rich 30 motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in 31 SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence 32 analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses, 33 except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, 34 -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all tested 35 non-EAV arteriviruses. Taken together, these data suggest that -2/-1 PRF is an evolutionarily 36 conserved mechanism employed in non-EAV/WPDV arteriviruses for the expression of 37 38 additional viral proteins that are important for viral replication.

39 **IMPORTANCE**

Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new 40 41 species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species and some of them caused lethal 42 hemorrhagic fever disease, this group of viruses has been under-characterized. Since wild 43 nonhuman primates are historically important sources or reservoirs of human pathogens, there is 44 concern that simarteriviruses may be "preemergent" zoonotic pathogens. Thus, molecular 45 characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we 46 demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by 47 simarteriviruses and other distantly related arteriviruses for the expression of additional viral 48 proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of 49 ribosome function in all living systems, the potential impact of the in-depth characterization of 50 this novel mechanism reaches beyond the field of virology. 51

52

53

54

55 **INTRODUCTION**

56

57 positive-stranded RNA viruses, namely porcine reproductive and respiratory syndrome virus 58 (PRRSV), mouse lactate dehydrogenase-elevating virus (LDV), equine arteritis virus (EAV), and simian hemorrhagic fever virus (SHFV), which were assigned to four species (1). Currently, this 59 family has been reclassified into six subfamilies with 19 species (2), in which the two genotypes 60 of PRRSV currently belong to two different species (PRRSV-1 and PRRSV-2), and the newly 61 identified wobbly possum disease virus [WPDV; (3)], Chinese rat arterivirus (RatAV) and 62 Ningxia rat arterivirus (RatAV_Ningxia2015) (2, 4), African pouched rat arterivirus [APRAV; 63 (5)] and new simarteriviruses were added as members of new species (6). Among these 64 arteriviruses, equine arteritis virus (EAV; Equarterivirinae) and PRRSV-1 and PRRSV-2 65 (Variarterivirinae) are economically important veterinary pathogens (7). Simarteriviruses 66 comprise a rapidly expanding subfamily of under-characterized arteriviruses now known to 67 infect a wide range of nonhuman primates. The most notorious simarteriviruses, Pebjah virus 68 (PBJV), simian hemorrhagic encephalitis virus (SHEV) and SHFV, have repeatedly caused 69 highly lethal hemorrhagic fever epizootics among captive macaques in the UK, US, and USSR 70 throughout the 1960s to 1990s [reviewed in (8)], but their natural host reservoirs are unknown. In 71 contrast, other simarteriviruses found in nature, in specific sub-clinically infected African 72 nonhuman primates, have not been implicated in epizootics. These viruses include DeBrazza's 73 74 monkey virus 1 (DeBMV-1) in DeBrazza's monkeys (*Cercopithecus neglectus*); Drakensberg

The family Arteriviridae within the order Nidovirales initially contained four species of

75	Mountain vervet virus (DMVV-1) in vervet monkeys (Chlorocebus pygerythrus) (6); Kafue
76	kinda-chacma baboon virus (KKCBV) in Kinda baboons (Papio kindae); Kibale red colobus
77	viruses 1 and 2 (KRCV-1 and KRCV-2) in Ugandan red colobus (Procolobus rufomitratus
78	tephrosceles) (9); Kibale red-tailed guenon viruses 1 and 2 (KRTGV-1/2) in red-tailed monkeys
79	(Cercopithecus ascanius) (10); Mikumi yellow baboon virus 1 (MYBV-1) in yellow baboons
80	(Papio cynocephalus) (11); SWBV-1 in olive baboons (Papio anubis) (11); and Zambian
81	malbrouck virus 1 (ZMbV-1) in malbrouck monkeys (Chlorocebus cynosuros) (6). In
82	experimental settings, KRCV-1 can cause mild disease in crab-eating macaques (Macaca
83	fascicularis) (12), whereas SWBV-1 infects, but does not appear to cause disease in rhesus
84	monkeys (Macaca mulatta) (13). Since wild nonhuman primates are historically important
85	sources/reservoirs of human pathogens, and because of their broad and diverse distribution
86	among African monkeys, there is concern that some simian arteriviruses may be "preemergent"
87	zoonotic pathogens (14). Hence, increased molecular characterization of simarteriviruses is
88	becoming a priority in arterivirology.

Most RNA viruses have polycistronic genomes and have evolved strategies to overcome a 89 limitation of the eukaryotic translation apparatus, namely that in general, only the 5'-most open 90 reading frame (ORF) on an mRNA is translated. These include non-canonical translation 91 92 mechanisms such as programmed ribosomal frameshifting [PRF] and alternative initiation, and in addition, the expression of polyproteins that are subsequently cleaved by virus or host 93 proteases. Viruses may also produce subgenomic mRNAs that are functionally monocistronic. 94

95 Arteriviruses employ several of these strategies to co-ordinate their complex replication cycle96 (15, 16).

97	Arterivirus genomes vary in length between 12.5-15.5 kb and contain 10-15 known ORFs.
98	All but two are located towards the 3' end of the genome and encode viral structural proteins that
99	are translated from a nested set of subgenomic mRNAs (17). ORF1a and ORF1b, at the 5' end of
100	the genome, comprise some three-quarters of the coding capacity and encode
101	replicase-associated proteins. Translation of the genomic RNA yields the ORF1a polyprotein and
102	in addition, an ORF1ab fusion polyprotein following -1 PRF at the ORF1a/ORF1b junction (18,
103	19). The two polyproteins are processed into individual functional nonstructural proteins (nsps)
104	by ORF1a-encoded protease domains. In PRRSV, these comprise two papain-like proteases,
105	PLP1 α and PLP1 β , located in nsp1 α and nsp1 β , respectively, a papain-like protease (PLP2)
106	domain situated in the N-terminus of nsp2, and a serine protease domain resided in nsp4. The
107	rapid release of nsp1 α , nsp1 β and nsp2 from the N-terminus of the polyprotein is mediated by
108	autocatalytic cleavage with PLP1 α (between nsp1 $\alpha/1\beta$), PLP1 β (nsp1 $\beta/2$) and PLP2 (nsp2/3)
109	(20). In the SHFV nsp1 region, three papain-like proteases (PLP α , PLP β and PLP γ) are present
110	within nsp1 subunits nsp1 α , nsp1 β , and nsp1 γ . Similar to PRRSV, these nsp1 subunits are
111	released from the N-terminus of SHFV polyproteins by autocleavages (21). Nsp2, the largest
112	replicase subunit of arteriviruses, is a multifunctional protein, which plays important roles in
113	viral replication and virus-host interaction (20, 22-30). In addition to cleavage of the nsp2/3 site,
114	the PLP2 domain functions as a co-factor for the serine protease during proteolytic processing of

115	the C-terminal region of pp1a and pp1ab (20, 31). The C-terminus of nsp2 contains a highly
116	conserved Cys-rich domain of unknown function, and a multispanning transmembrane domain
117	that plays critical role in the formation of membranous structures (32).
118	PRRSV uses an unusual -2 programmed ribosomal frameshifting (PRF) signal to direct
119	efficient expression of an additional protein from the +1 reading frame overlapping the
120	nsp2-encoding region. The -2 PRF generates a transframe (TF) fusion protein, nsp2TF. It
121	consists of the N-terminal two thirds of nsp2, followed by a unique C-terminal domain that is
122	encoded by a novel overlapping TF ORF (33). At the same frameshifting site, an immediate stop
123	codon was generated by -1 PRF, which leads to the expression of a truncated nsp2, designated as
124	nsp2N (34). Remarkably, both cellular poly(rC) binding proteins (PCBPs) and viral nsp1 β are
125	required for efficient -2/-1 PRF (35). Sequence analysis showed that the signals for -2/-1 PRF,
126	including a slippery sequence and downstream C-rich RNA motif, are highly conserved in all
127	arterivirus genomes except that of EAV (36). However, variations in slippery sequences were
128	identified in several newly identified simarteriviruses. In this study, we demonstrated that -2/-1
129	PRF identified in PRRSV is evolutionarily conserved in non-EAV/WPDV arteriviruses, with
130	particular emphasis on simarteriviruses. This study provides additional insights into the
131	biological characteristics of arteriviruses and advances our knowledge of non-canonical
132	translation mechanisms in both virus infection and cellular systems.
133	

135 MATERIALS AND METHODS

148

Cells and viruses: Embryonic grivet (Chlorocebus aethiops) kidney epithelial cells (MARC-145; 136 137 ATCC CRL-12231) were used for SHFV propagation and subsequent experiments. Human embryonic kidney 293T (HEK-293T; ATCC CRL-3216) cells were used for ectopic protein 138 expression. These cells were maintained in minimum essential medium (MEM; Thermo Fisher 139 Scientific, Waltham, MA) supplemented with 10% heat-inactivated fetal bovine serum (FBS; 140 Sigma-Aldrich, St. Louis, MO), 100 U/ml of Penicillin-Streptomycin (Thermo Fisher Scientific, 141 Waltham, MA), and 0.25 µg/mL of Gibco[™] Amphotericin B (Thermo Fisher Scientific, Waltham, 142 MA) at 37 °C with 5% CO₂. SHFV isolate KS-06_17_11 [strain LVR 42-0/M6941; GenBank 143 accession No. KM373784.1 (37)] and mutants thereof were used for experiments. These mutants 144 were rescued with SHFV reverse genetics and designated as vY111A, vR114A, vSS1 and vSS2, 145 and vCC1. 146 **Plasmids:** Based on a previous study (21), SHFV nsp1 β is predicted to contain amino acids (aa) 147

166-350 of SHFV ORF1a, while nsp2 contains aa 486-1236 of SHFV ORF1a. In this study, the

149 coding sequences of nsp1 β and nsp2 were inserted into the pcDNATM3.1⁽⁺⁾ vector (Thermo

150 Fisher Scientific, Waltham, MA) under the control of the CMV promoter and also N-terminally

151 tagged with FLAG (DYKDDDDK) epitope or hemagglutinin (HA) epitope, designated as

- 152 pFLAG-SHFV-nsp1 β and pHA-SHFV-nsp2, respectively. Mutations in nsp1 β were generated
- using the QuikChange® Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA)
- according to the manufacturer's instructions. Wild type (wt) $nsp1\beta$ and mutants thereof were also

155	cloned into the pGEX-6p-2 vector (GE Healthcare, Chicago, IL) for expression as
156	glutathione-S-transferase (GST)-tagged proteins. The coding regions of $nsp1\beta$ and PLP2 domain
157	were also cloned into pET28a (+) vector (MilliporeSigma, Burlington, MA). Plasmids
158	expressing $nsp1\beta$ and $nsp2$ proteins of PRRSV were described elsewhere (34). The predicted
159	nsp1 β gene sequence of KRCV-1 (GenBank accession No. HQ845737.1) were cloned into the
160	p3xFLAG-Myc-CMV TM -24 expression vector (Sigma-Aldrich, St. Louis, MO), while the
161	predicted nsp2 gene sequence of KRCV-1 (GenBank accession No. HQ845737.1) tagged with
162	hemagglutinin (HA) epitope at the N-terminus was cloned into the pcDNA TM 3.1 ⁽⁺⁾ vector
163	(Thermo Fisher Scientific, Waltham, MA). The LDV Plagemann strain (LDV-P) nsp1 β gene was
164	codon-optimized for expression in human cells and cloned into the p3xFLAG-Myc-CMV TM -24
165	expression vector (Sigma-Aldrich, St. Louis, MO). The plasmid was designated as
166	pFLAG-LDV-nsp1 β . The plasmid expressing nsp1 of EAV Bucyrus strain was described
167	previously (38). A dual luciferase reporter plasmid, pDluc (39), was used for evaluation of <i>in</i>
168	vitro programmed ribosomal frameshifting (PRF) efficiencies. The pDluc-SHFV/WT plasmid
169	and mutants thereof were generated by inserting the SHFV -2/-1 PRF signal into pDluc between
170	Renilla and firefly luciferase reporter genes using the method we described previously (34). The
171	pDluc-PRRSV/WT plasmid containing -2/-1 PRF signals of PRRSV-1 was described in our
172	previous study (34). Human PCBP2 (NM_005016.5) cloned in pcDNA TM 3.1 ⁽⁺⁾ was kindly
173	provided by Professor Asit K. Pattnaik, University of Nebraska-Lincoln, Nebraska. For
174	expression of the hexahistidine (His)-tagged recombinant protein, the PCBP2 gene was cloned

175	into the pET28a (+) vector (MilliporeSigma, Burlington, MA) with a His tag on the N-terminus.
176	Antibodies: Monoclonal antibodies (mAbs) against SHFV nsp1 β and the nsp2 N-terminal PLP2
177	domain were generated using the method that we described previously (40). The mouse
178	experiment was performed according to protocols approved by the Institutional Animal Care and
179	Use Committee (IACUC) of Kansas State University. Briefly, BALB/c laboratory mice (Jackson
180	laboratory, Bar Harbor, ME) were immunized 3 times with 50 μ g purified protein mixed with
181	Freund's incomplete adjuvant (Sigma-Aldrich, St. Louis, MO) at 2-week intervals. Mouse
182	splenocytes were fused with NS-1 myeloma cells. Specific anti-nsp1 β and anti-nsp2 mAbs were
183	obtained by screening with an immunofluorescence assay. MAbs 133-243 and 134-260 against
184	the SHFV nsp2 N-terminal PLP2 domain and mAb 76-69 against SHFV nsp1 β were used in this
185	study. MAbs 36-19 and 140-68 were used for specifically recognizing nsp2 of PRRSV-1 and
186	PRRSV-2, respectively (34). A polyclonal antibody (pAb) against the SHFV nsp2TF C-terminal
187	peptide (RLDSTVVFEETTPLLDQVPVC; nsp2TFC) was produced in rabbits by GenScript
188	(Piscataway, NJ). The following antibodies from commercial resources were also used in this
189	study: anti-HA tag mAb 16B12 (Biolegend, San Diego, CA), anti-FLAG tag mAb M2
190	(Sigma-Aldrich, St. Louis, MO), anti-human PCBP2 mAb 23-G (Santa Cruz Biotechnology,
191	Dallas, TX), anti-human PCBP1 rabbit pAb (Sigma-Aldrich, St. Louis, MO),
192	anti-Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pAb (Santa Cruz Biotechnology,
193	Dallas, TX), and anti-Renilla luciferase mAb clone 1D5.2 (MilliporeSigma, Burlington, MA).
194	The mAb 12A4 against EAV nsp1 (41) was generously provided by Dr. Udeni Balasuriya at

195 Louisiana State University.

196	Protein expression and purification: Recombinant proteins were expressed and purified using
197	the methods described previously (35). Briefly, His-tagged nsp1 β and the PLP2 domain of nsp2
198	were expressed in E. coli BL21/DE3/pLysS (Thermo Fisher Scientific, Waltham, MA) and
199	purified using Ni-nitrilotriacetic acid agarose resin (Ni-NTA; Qiagen, Germantown, MD).
200	GST-tagged nsp1 β and mutants thereof were expressed in <i>E. coli</i> BL21/DE3/pLysS (Thermo
201	Fisher Scientific, Waltham, MA) and purified using glutathione agarose resin (Thermo Fisher
202	Scientific, Waltham, MA). His-tagged PCBP2 were expressed in E. coli BL21/DE3/pLysS
203	(Thermo Fisher Scientific, Waltham, MA) and purified using Ni-nitrilotriacetic acid agarose
204	resin (Ni-NTA; Qiagen, Germantown, MD). Proteins were dialyzed, quantified with Pierce BCA
205	Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA), and stored at -80 °C.
206	In vitro translation: In vitro translation was performed using nuclease-treated rabbit reticulocyte
207	lysate (RRL; Promega, Madison, WI) or wheat germ extract (WGE; Promega, Madison, WI) as
208	described previously (35). Briefly, 5'-capped messenger RNAs were generated using T7 RNA
209	polymerase (New England Biolabs, Ipswich, MA) with FspI-linearized pDluc reporter plasmid.
210	In vitro translation reactions (10 μ l) were reconstituted with mRNA template (50 μ g/ml), RRL (9
211	μ l) or WGE (9 μ l) containing 20 μ M amino acids without methionine (Promega, Madison, WI),
212	0.2 MBq [³⁵ S]-methionine (PerkinElmer, Waltham, MA), and purified viral protein and/or
213	cellular protein. After 1 h incubation at 30 °C, proteins were separated in 12% SDS-PAGE gels.
214	The protein gels were dried and exposed to X-ray film or to a Cyclone Plus Storage Phosphor

e University.

215	Screen (PerkinElmer, Waltham, MA). Images were developed using a Typhoon TRIO Variable
216	Mode Imager (GE Healthcare, Chicago, IL), and protein bands were quantified using
217	ImageQuant TM TL software (GE Healthcare, Chicago, IL). The formula [IFS1/MetFS1]/[IS/MetS
218	+ IFS1/MetFS1 + IFS2/MetFS2] was used to calculate -1 PRF efficiency. In this formula, the
219	number of methionines in the product without a frameshift (stop) and the -1/-2 frameshift (FS)
220	products are denoted by MetS, MetFS1 and MetFS2, respectively, and the densitometry values
221	for the same products are denoted by IS, IFS1 and IFS2, respectively. The -2 PRF efficiency was
222	calculated similarly. All frameshifting assays were repeated at least three times.
223	Immunoprecipitation and western blots: Expression of PRRSV nsp2TF and nsp2N was
224	detected by immunoprecipitation (IP) and western blot analysis as described previously (34).
225	Similar methods were used for detecting the expression of the SHFV nsp2-related proteins. In
226	the ectopic expression system, HEK-293T cells in 6-well plates were co-transfected with plasmid
227	DNA (1 μ g) expressing SHFV nsp2 and plasmid DNA (0.5 μ g) expressing SHFV nsp1 β or its
228	mutants. The empty vector was included as a control. At 36 h post transfection (hpt), cell lysates
229	were harvested with 300 μ l IP lysis wash buffer per well (Thermo Fisher Scientific, Waltham,
230	MA) supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, MO). For the
231	SHFV infection system, MARC-145 cells seeded in 6-well plates were infected with the parental
232	virus or mutants thereof at a multiplicity of infection (MOI) of 0.01; cells were mock-inoculated
233	to serve as a negative control. At 36 hpi, cell lysates were harvested with 300 μ l IP lysis wash
234	buffer per well (Thermo Fisher Scientific, Waltham, MA), supplemented with Protease Inhibitor

235	Cocktail (Sigma-Aldrich, St. Louis, MO). IP was performed using the Pierce [™] Classic Magnetic
236	IP/Co-IP Kit (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer's
237	instructions. SHFV nsp2-related proteins were immunoprecipitated with mAb 133-243 against
238	the SHFV PLP2 domain. Western blot analysis was conducted with mAb 134-260 against the
239	SHFV PLP2 domain and rabbit anti-sera against the nsp2TF C-terminal peptide. IRDye®
240	800CW Goat anti-Mouse IgG (H + L) or/and IRDye® 680RD Goat anti-Rabbit IgG (H + L)
241	(LI-COR Biosciences, Lincoln, NE) were used as secondary antibodies. The target proteins were
242	visualized using a digital imaging system (Odyssey infrared imaging system; LI-COR
243	Biosciences, Lincoln, NE).
244	IP and western blots were also performed to determine the interactions between SHFV
245	$nsp1\beta$ and PCBP1/2 as described previously (42). In the ectopic expression system, HEK-293T
246	cells seeded in 6-cm dishes were transfected with plasmid DNA (3 μ g) expressing SHFV nsp1 β .
247	An empty vector was included as a control. At 36 hpt, cell lysates were harvested with 500 μl IP
248	lysis wash buffer per well (Thermo Fisher Scientific, Waltham, MA) supplemented with Protease
249	Inhibitor Cocktail (Sigma-Aldrich, St. Louis, MO). IP was conducted using FLAG mAb M2 to
250	precipitate the FLAG-tagged SHFV-nsp1 β , and western blot analysis was performed to detect
251	SHFV nsp1 β and PCBP1/2 using specific mAbs. For the SHFV infection system, MARC-145
252	cells seeded in 10-cm dishes were infected with SHFV at an MOI of 0.01. Mock-infected cells
253	were included in the analysis as a negative control. At 36 hpi, cell lysates were harvested with 1
254	ml IP lysis wash buffer per dish (Thermo Fisher Scientific, Waltham, MA) supplemented with

255	Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, MO). IP was conducted using PCBP2
256	mAb 23-G, and western blot analysis was performed to detect SHFV nsp1 β and PCBP2 with
257	specific mAbs.

258	SHFV reverse genetics system: The SHFV infectious clone (pCMV-SHFV) consists of a
259	commercially synthesized cDNA covering the full-length genome of SHFV (GenBank
260	#KM373784.1) with a CMV immediate-early enhancer and promoter at the 5' end and a hepatitis
261	delta virus ribozyme sequence (pCMV-SHFV) at the 3' end. This cassette was assembled into a
262	pACYC177 vector backbone (GenBank #X06402). The full-length cDNA clones containing
263	mutations at the region of nsp1 β or the -2/-1 PRF signal were created using the QuikChange®
264	Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA) according to the
265	manufacturer's instructions. Viruses were rescued by transfection of 70-80% confluent
266	MARC-145 cells with 2 μ g of pCMV-SHFV or mutants thereof using Transit-LT1 transfection
267	reagent (Mirus Bi LLC, Madison, WI). Viability of the recombinant viruses was determined by
268	observing the cytopathic effect (CPE) and by immunofluorescence assay using SHFV PLP2
269	mAb 134-260. The cell culture supernatant was harvested at 80% CPE. The recombinant viruses
270	were serially passaged 5 times on MARC-145 cells. Passage 5 (P5) viruses were used for
271	subsequent study. To test the stability of mutants, substitutions in mutants of P5 viruses were
272	verified by sequencing -2/-1 PRF signal and nsp1 β coding regions.
273	In vitro characterization of recombinant viruses: Recombinant viruses were characterized by

determining the viral growth kinetics. For multi-step growth curves, MARC-145 cells were

275	seeded in 24-well plates. When the cells reached 100% confluence, they were infected with
276	parental virus or mutants thereof at an MOI of 0.01. Cell culture supernatants were collected at
277	12, 24, 36, 48, 60 and 72 h post-infection (hpi). Virus titer was measured by titration on
278	MARC-145 cells and calculated as $TCID_{50}/mL$ according to the Reed and Muench method (43).
279	To determine the plaque morphology of the parental virus and corresponding mutants, a plaque
280	assay was performed in MARC-145 cells using the method described previously (33).
281	
282	RESULTS
283	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism are
283 284	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism are conserved in non-EAV/WPDV arteriviruses
283 284 285	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism are conserved in non-EAV/WPDV arteriviruses Previously, we identified the frameshift RNA signal of PRRSV, which consists of a slippery
283 284 285 286	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism areconserved in non-EAV/WPDV arterivirusesPreviously, we identified the frameshift RNA signal of PRRSV, which consists of a slipperysequence (G_GUU_UUU) and a downstream C-rich motif (CCCANCUCC) separated from the
283 284 285 286 287	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism areconserved in non-EAV/WPDV arterivirusesPreviously, we identified the frameshift RNA signal of PRRSV, which consists of a slipperysequence (G_GUU_UUU) and a downstream C-rich motif (CCCANCUCC) separated from theslippery sequence by a 10-nt "spacer" (34, 35). In addition, the PRRSV replicase subunit nsp1β
283 284 285 286 287 288	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism areconserved in non-EAV/WPDV arterivirusesPreviously, we identified the frameshift RNA signal of PRRSV, which consists of a slipperysequence (G_GUU_UUU) and a downstream C-rich motif (CCCANCUCC) separated from theslippery sequence by a 10-nt "spacer" (34, 35). In addition, the PRRSV replicase subunit nsp1βfunctions as a transactivator for both -2 and -1 PRF; in particular, a highly conserved α-helix
283 284 285 286 287 288 288	Key elements of a -2/-1 programmed ribosomal frameshifting (PRF) mechanism areconserved in non-EAV/WPDV arterivirusesPreviously, we identified the frameshift RNA signal of PRRSV, which consists of a slipperysequence (G_GUU_UUU) and a downstream C-rich motif (CCCANCUCC) separated from theslippery sequence by a 10-nt "spacer" (34, 35). In addition, the PRRSV replicase subunit nsp1βfunctions as a transactivator for both -2 and -1 PRF; in particular, a highly conserved α-helixmotif in nsp1β is critical for PRF transactivation (34). In this study, comparative genomic

viruses of all relevant species in the *Arteriviridae* family. The slippery sequence and C-rich motif

- of the PRF signal were identified in all simarteriviruses, although a few substitutions were
- observed for viruses of different species, including U_GUU_UUU (KRTGV, PBJV, and

DeMAV), G_GUC_UCU (KRCV-1, KRCV-2, MYBV-1, and KKCBV) and U_UUC_UCU

295	(FSVV, SHEV, and ZMbV-1) (Fig. 1A). These signals all allow anticodon:codon re-pairing in the
296	A-site following a -2 PRF but, as that in PRRSV, the potential for re-pairing in the P-site is more
297	limited. Of note, these PRF RNA signals were found in all known arteriviruses except EAV.
298	Additionally, the distance between slippery sequence and C-rich motif is 9-10 nucleotides (nt)
299	except in WPDV where the closest C-rich sequence was at a distance of 19 nt. The highly
300	conserved motif in PRRSV-2 nsp1 β is also found in all known arteriviruses except WPDV and
301	EAV (Fig.1B). In line with our previous studies in PRRSV (44, 45), two arginine residues in this
302	motif are conserved among most arteriviruses (Arg114 and Arg115 in SHFV). In APRAV-1, the
303	second arginine is replaced with a leucine residue (Fig. 1B). The 3D structures of $nsp1\beta$ of
304	arteriviruses except WPDV and EAV were predicted with the I-TASSER server and RaptorX
305	server guided by the known crystal structure of PRRSV-2 (XH-GD strain) nsp1 β (46-48) (Fig.
306	1C). The highly conserved motif consistently forms an α -helix. The longer distance between
307	slippery sequence and C-rich sequence in WPDV and its different $nsp1\beta$ protein conformation
308	compared to other arteriviruses suggest that WPDV likely does not utilize frameshifting at this
309	site. Taken together, these data suggest that -2/-1 PRF might be an evolutionarily conserved
310	mechanism for the expression of additional viral proteins in non-EAV/WPDV arteriviruses.

311 SHFV nsp1β transactivates -2/-1 ribosomal frameshifting

In PRRSV, -2/-1 PRF results in the translation of two novel proteins, nsp2TF and nsp2N (34). To

test our hypothesis that -2/-1 PRF is utilized to translate nsp2TF and nsp2N proteins in

314	simarteriviruses, we initially characterized nsp2-related proteins in SHFV-infected MARC-145
315	cells. For the detection of nsp2-related proteins, we generated two monoclonal antibodies (mAb
316	133-243 and mAb 134-260) against the PLP2 domain, which is shared by SHFV nsp2 and the
317	predicted nsp2TF and nsp2N. A rabbit polyclonal antibody against the unique epitope
318	(RLDSTVVFEETTPL) at the C-terminus of nsp2TF was also generated for specific
319	identification of nsp2TF. The N-terminus of SHFV nsp2 (Gly484/Gly485/Gly486; the residue
320	positions based on SHFV pp1a sequence) was determined by mass spectrometry sequence
321	analysis previously (21). We further predicted the C-terminus of SHFV nsp2 based on the
322	putative cleavage site between nsp2 and nsp3. As shown in Fig. 2A, the cleavage site of SHFV
323	nsp2/3 was predicted to be between Gly1236 and Gly1237 (the residue positions based on SHFV
324	pp1a sequence) by sequence alignment analysis with the nsp2/3 cleavage site in PRRSVs (20).
325	Thus, the SHFV nsp2 gene is predicted to be nt 1649-3901 of the SHFV genome, and the
326	predicted protein size is 81.2 kDa. If -2/-1 PRF occurs, nsp2TF would be translated from SHFV
327	genomic nucleotides 1,649–2,860 fused to nucleotides 2,859–3,536, which results in a product
328	with a predicted size of 68.7 kDa; nsp2N would be translated from SHFV genomic nucleotides
329	1,649–2,860 fused to 2,860–3,093, resulting in a product with a predicted size of 52 kDa (Fig.
330	2B). Western blot analysis was performed to identify nsp2-related proteins in SHFV-infected
331	MARC-145 cells. As shown in Figure 2, four major virus-specific bands were detected by mAb
332	134-260 against SHFV PLP2 (Fig. 2C, left panel). The top three largest proteins appear to be
333	nsp2, nsp2TF and nsp2N, although their masses are larger than those that were predicted - a

334	phenomenon that was previously reported for nsp2-related proteins of PRRSV (33). The rabbit
335	polyclonal antibody (pAb) specifically designed to detect SHFV nsp2TF recognized two protein
336	bands on western blot. The top band appeared to be a cellular protein, since this band was also
337	detected in mock-infected cells, while the second large protein band was specific to nsp2TF (Fig.
338	2C, right panel), indicating that SHFV indeed expresses nsp2TF via -2 PRF. The fourth band
339	with a size less than 50 kDa is a C-terminal truncated isoform of nsp2, which may be generated
340	by a proteolytic cleavage of PLP2 or some other proteinase. The identity of this product needs to
341	be further studied in the future. To confirm the identity of these nsp2-related proteins,
342	immunoprecipitation (IP) was performed with anti-PLP2 mAb 133-243 using cell lysate of
343	SHFV-infected MARC-145 cells, while cell lysate of mock-infected MARC-145 cells was used
344	as a negative control. As expected, four major bands were detected in the IP product using mAb
345	134-260 (Fig. 2D, left panel), and the second largest protein band was also recognized by the
346	nsp2TF-specific pAb (Fig. 2D, right).

An ectopic expression system was further employed to investigate whether the expression of SHFV nsp2TF and nsp2N requires nsp1 β as a PRF transactivator. In HEK-293T cells transfected with a plasmid expressing SHFV nsp2 alone, the PRF products, nsp2TF and nsp2N, were not detected (Fig. 3A, lane "EV"). When HEK-293T cells were co-transfected with plasmids expressing nsp2 and nsp1 β , both PRF products, nsp2TF and nsp2N, were detected (Figure 3A, lane "nsp1 β "). These results indicate that SHFV nsp1 β is critical for the expression of nsp2TF and nsp2N. To further identify the key residues in SHFV nsp1 β , amino acids Gly109, Lys110,

354	Tyr111, Arg114 and Arg115 in the conserved motif (Fig. 1A) were targeted for mutagenesis with
355	alanine replacement. Consistent with our previous findings on PRRSV (34, 45), mutation of
356	R114A completely abolished the expression of nsp2TF and nsp2N, whereas the G109A and
357	K110A mutations had no obvious effects on the expression of nsp2TF and nsp2N. The R115A
358	mutant stimulated lower expression levels of nsp2TF and nsp2N, which may be due to the lower
359	expression level of this nsp1 β mutant. The Y111A mutant was also unable to stimulate the
360	expression of nsp2TF and nsp2N, indicating that Tyr111 is another key residue for nsp1 β 's
361	function in transactivation of -2/-1 PRF (Fig. 3A). This result was further confirmed with
362	PRRSV: nsp2TF and nsp2N were not detectable in HEK-293T cells expressing PRRSV nsp1 β
363	mutants that contained the corresponding alanine substitution at Y125 (PRRSV-2) or Y131
364	(PRRSV-1) (Fig. 3B). Similar to the R115A mutant, a lower expression level was observed for
365	the SHFV Y111A mutant (Fig. 3A). However, this lower expression should not be the direct
366	reason leading to the loss of expression of nsp2TF and nsp2N, since the Y111A mutant with
367	similar expression level to wild type $nsp1\beta$ in vY111A-infected cells was unable to stimulate the
368	expression of nsp2TF and nsp2N (see Fig. 5 below).
369	A dual luciferase reporter system was employed to confirm the activity of SHFV nsp1 β in

stimulating -2/-1 PRF at the predicted PRF signal in the SHFV genome. A dual luciferase

reporter plasmid, pDluc-SHFV/WT, was generated using the approach that we described

previously (34), in which 79 nt containing the SHFV PRF signal are inserted in the plasmid

between *Renilla* luciferase (Rluc) and firefly luciferase (Fluc) ORFs. In this construct, Fluc is

374	encoded in the -2 frame relative to the upstream Rluc ORF. Besides an in-frame Rluc product
375	(stop), two frameshifting products (-2FS and -1FS) can be expressed through -2/-1 PRF (Fig. 4A).
376	The predicted sizes of the stop, -1FS and -2FS products are 40.4 kDa, 43.4 kDa and 100.1 kDa,
377	respectively. In HEK-293T cells co-transfected with the reporter plasmid and a plasmid
378	expressing SHFV nsp1 β , all three nsp2-related proteins were detected at the predicted sizes by a
379	monoclonal antibody against their shared N-terminal Rluc (Fig. 4B lane "nsp1 β "). Only the
380	in-frame translation product (Stop) was detected in cells without the expression of SHFV nsp1 β
381	(Fig. 4B lane "EV" in the "pDluc-SHFV/WT" transfected cells). The ability of $nsp1\beta$ mutants to
382	activate -2/-1 PRF was also tested using this reporter system. In cells expressing the SHFV
383	nsp1 β Y111A or R114A mutants, -2FS and -1FS expression products were undetectable,
384	indicating that Tyr111 and Arg114 are essential to nsp1ß's ability to stimulate frameshifting (Fig.
385	4B). In cells expressing the SHFV nsp1 β R115A mutant, reduced expression of the -2FS product
386	was observed while the -1FS product was undetectable. Compared to the reduced expression
387	level of nsp2TF and nsp2N stimulated by the R115A mutant in Fig. 3A, the result suggests that
388	the SHFV nsp1 β R115A mutant in the luciferase reporter system may stimulate a much lower
389	level of -1FS that was under the detection limit of western blot analysis.
390	These findings were further confirmed in an <i>in vitro</i> translation assay using rabbit
391	reticulocyte lysate (RRL) programmed with an in vitro transcribed reporter mRNA and purified
392	nsp1 β protein (Fig. 4C). In this system, the predicted masses of stop, -1FS and -2FS products are
393	40.4 kDa, 43.4 kDa and 70.8 kDa. When in vitro translation was performed with only reporter

394	mRNA from pDluc-SHFV/WT, the -2FS product was not detected and only a trace amount of
395	-1FS was observed (Fig. 4C, lane "DB"). In contrast, with the addition of purified $nsp1\beta$, -1FS
396	and -2FS were detected at the predicted molecular masses. Furthermore, within the range of 0~1
397	μ M of nsp1 β , expression levels of the -1 and -2 PRF products were observed to be
398	dose-dependent (Fig. 4C-D). When the concentration of $nsp1\beta$ was higher than 1 μ M, both
399	frameshifts reached their maximum efficiencies, which were 11.7% (-2 PRF) and 3.5% (-1 PRF)
400	(Fig. 4D). Furthermore, purified nsp1 β mutant R114A was impaired with its ability to stimulate
401	-2/-1 PRF, as demonstrated by the disappearance of the -2FS product and the amount of -1FS
402	product was reduced to the background level (Fig. 4E).
403	To further confirm these results in the context of SHFV infection, two recombinant viruses,
404	vY111A and vR114A, were rescued using a SHFV reverse genetics system (constructed from
405	variant strain NIH <i>LVR</i> 42-0/ <i>M</i> 6941). The ability of vY111A and vR114A to express nsp2TF and
406	nsp2N was evaluated by western blot analysis using cell lysates of SHFV-infected MARC-145
407	cells. In MARC-145 cells infected with either of the two nsp1 β mutants, nsp2TF was not
408	detected and only a low expression level of nsp2N was detected (Fig. 5), which is consistent with
409	the results generated in the <i>in vitro</i> expression systems.
410	
411	Both slippery sequence and C-rich motif are required for efficient -2/-1 PRF in simian
412	arteriviruses

413 As described above (Fig. 1A), the -2/-1 PRF signals (slippery sequence and C-rich RNA motif)

414	were found in all simarteriviruses. However, four types of slippery sequence were observed in
415	simarteriviruses of different species, namely G_GUU_UUU (SHFV), U_GUU_UUU (DeMAV,
416	KRTGV, and PBJV), G_GUC_UCU (KKCBV, KRCV-1, KRCV-2, and MYBV-1) and
417	U_UUC_UCU (FSVV, SHEV, ZMbV-1). To test whether some of these variant sequences could
418	support -2/-1 PRF in the context of the SHFV 3' stimulatory sequence and SHFV nsp1 β ,
419	plasmids pDluc-SHFV/SS1 and pDluc-SHFV/SS2 were created by introducing mutations at the
420	SHFV slippery sequence in the dual luciferase reporter plasmid pDluc-SHFV/WT to mimic the
421	PRF signals of distinct simarteriviruses (Fig. 6A). In the pDluc-SHFV/SS1 construct, the
422	slippery sequence (G_GUU_UUU) was changed to G_GUC_UCU, whereas in the
423	pDluc-SHFV/SS2 construct, the slippery sequence was changed to U_UUC_UCU (Fig. 6A). In
424	HEK-293T cells expressing SHFV nsp1 β , the SHFV/WT slippery sequence permits -2/-1 PRF,
425	as evidenced by the detection of -1FS and -2FS expression products with mAb against Renilla
426	luciferase in western blots (Fig. 6B). In contrast, only the -2FS product was detected when the
427	SHFV/SS1 or SHFV/SS2 constructs were used. We further confirmed this result using an <i>in vitro</i>
428	translation assay in RRL. The reporter mRNAs transcribed from pDluc-SHFV/SS1 or
429	pDluc-SHFV/SS2 constructs and translated in RRL only generated stop and -2FS products in the
430	presence of SHFV nsp1 β (Fig. 6C).
431	We further confirmed the results using simarterivirus KRCV-1. As indicated above, the
432	genome of this virus contains the slippery sequence (G_GUC_UCU). The predicted coding

433 regions of KRCV-1 nsp1 β and nsp2 were cloned into eukaryotic expression vectors. The

434	predicted sizes of KRCV-1 nsp2 and nsp2TF are 77.9 kDa and 64.7 kDa. In HEK-293T cells
435	co-transfected with plasmids containing $nsp1\beta$ and $nsp2$, the expression of $nsp2TF$ was detected
436	but no nsp2N was detected. As we expected, no frameshifting products were detected in
437	HEK-293T cells that were not transfected with the plasmid expressing nsp1 β (Fig. 6D). These
438	data indicate that the slippery sequence of KRCV-1 lacks the ability to support -1 PRF, which is
439	consistent with the results generated with the luciferase reporter system.
440	Subsequently, we investigated the function of the C-rich RNA motif in SHFV -2/-1 PRF. The
441	plasmid pDluc-SHFV/CC1 was constructed by introducing synonymous mutations to disrupt two
442	C-rich patches within the PRF signal (Fig. 6A). HEK-293T cells were co-transfected with
443	pDluc-SHFV/CC1 and the plasmid expressing SHFV nsp1 β . No frameshifting products were
444	detected (Fig. 6B). This result was further confirmed by in vitro translation assay using RRL.
445	Again, no frameshifting products were detected in <i>in vitro</i> translation reactions when using the
446	reporter mRNAs transcribed from the pDluc-SHFV/CC1 construct (Fig. 6C), thus indicating that
447	the substitutions of C residues in the C-rich RNA motif knock out both -2 and -1 PRF in the case
448	of SHFV.
449	Next, we confirmed the data from in vitro analysis using recombinant viruses carrying the

mutations designed in pDluc-SHFV/SS1, pDluc-SHFV/SS2 and pDluc-SHFV/CC1. Using the
SHFV reverse genetics system, three recombinant viruses were generated and designated as
vSS1, vSS2, and vCC1. Western blot analysis was performed to assess the expression of nsp2TF
and nsp2N in WT- and mutant virus-infected MARC-145 cells. The results were consistent with

454	the data generated in the <i>in vitro</i> expression system, in which the -1 PRF product (nsp2N) was
455	not detected in vSS1 and vSS2, whereas expression of both -2 PRF and -1 PRF products was not
456	detected in vCC1 (Fig. 6E). These data indicate that the C-rich RNA motif is required for
457	efficient -2/-1 PRF in simarteriviruses, and that X_XUC_UCU variants of the slippery sequence
458	lack the ability to facilitate -1 PRF.

459

Poly(rC) binding proteins are important for efficient -2/-1 PRF in simarteriviruses 460 In our previous study, poly(rC) binding proteins (PCBPs) were demonstrated to be critical for 461 -2/-1 PRF in PRRSV (35). To test whether PCBPs are also involved in stimulating -2/-1 PRF in 462 simarteriviruses, in vitro translations were performed with SHFV reporter mRNA and the 463 addition of nsp1ß and/or PCBP2 in wheat germ extract (WGE). In vitro translation using RRL 464 was included as the control. As expected, in RRL, both -2FS and -1FS were stimulated by the 465 presence of nsp1ß (Fig. 7A). In the WGE system, although there was some expression of -2FS 466 and -1FS products in the absence of any exogenous protein, these levels were greatly stimulated 467 only upon the addition of both nsp1 β and PCBP2. The presence of nsp1 β or PCBP2 alone 468 showed no stimulatory effect on the translation of -2FS and -1FS products. (Note that, in contrast 469 to RRL, WGE likely contains endogenous PCBPs that are divergent from those of mammalian 470 cells and not active in the stimulation of PRF.) Interestingly, the frameshifting efficiencies for -1 471 PRF in WGE were much higher than those observed using RRL (Fig. 7B). With the addition of 472 473 nsp1β and PCBP2 in WGE, the efficiency of -2 PRF increased from 0.9% to 9.8%, whereas the

474	efficiency of -1 PRF increased from 8% to 29%. These data suggest that PCBPs are required for
475	efficient -2/-1 PRF in simarteriviruses.

476 Previously, the interaction between PCBPs and PRRSV-1 nsp1 β was determined to be

- 477 required for nsp1 β 's ability to bind the PRRSV-1 -2/-1 PRF RNA signal (35). In this study, we
- 478 further analyzed the interactions between PCBP1/2 and SHFV nsp1 β . In HEK-293T cells
- transfected with plasmids expressing FLAG-tagged SHFV nsp1 β and PCBP2, the protein
- 480 complex of $nsp1\beta$ and PCBP2 was immunoprecipitated by anti-FLAG mAb and subsequently
- detected by western blot analysis using anti-PCBP2 mAb (Fig. 8A). Consistently, in
- 482 SHFV-infected MARC-145 cells, $nsp1\beta$ was pulled down by the mAb against PCBP2 (Fig. 8B).
- 483 Similarly, the interaction between SHFV nsp1 β and PCBP1 was also demonstrated by
- 484 immunoprecipitation and western blot analysis (Fig. 8C).
- 485

486 The frameshift products play a role in SHFV replication *in vitro*

As described above, a panel of recombinant viruses containing mutations in nsp1β or the -2/-1
PRF signal regions was rescued using SHFV reverse genetics. Five recombinant viruses with
deficiencies in the expression of nsp2N and/or nsp2TF were further passaged five times in
MARC-145 cells, and the introduced mutations were verified for P5 viruses (data not shown).
The P3 recombinant viruses were used to evaluate viral growth kinetics *in vitro*, and wild type
(WT) SHFV recovered by the reverse genetics was included as the control. Growth kinetic
analysis showed that vY111A, vR114A and vCC1 had attenuated viral growth in MARC-145

494	cells, whereas vSS1 and vSS2 displayed similar growth kinetics as that of WT virus (Fig. 9A).
495	Before 48 hpi, virus titers of vCC1 were reduced by about 1-log compared to WT. In contrast,
496	growth of the vY111A and vR114A mutants was more significantly reduced, with a 1.5 to 3-log
497	decrease in virus titers throughout the time course of the study (Fig. 9A). The plaque assay
498	results consistently showed that the vCC1, vY111A and vR114A mutants developed smaller
499	plaques than those caused by WT virus (Fig. 9B). All three mutants displaying attenuated growth
500	have lost the ability to express nsp2TF and nsp2N (Fig. 5 and 6E). On the other hand, vSS1 and
501	vSS2 express nsp2TF but not nsp2N and had growth kinetics more similar to that of WT virus.
502	This suggests that nsp2TF plays a role in SHFV replication whereas nsp2N appears not to be
503	important for viral growth in MARC-145 cells. Nonetheless, the relatively mild attenuation of
504	vCC1, which expresses neither nsp2TF nor nps2N, confirms that neither protein is essential for
505	viral growth in cell culture, but they may be important for maintaining maximal virus fitness.
506	
507	Heterotypic arterivirus nsp1 β s stimulate ribosomal frameshifting on the SHFV -2/-1 PRF
508	signal
509	The genomes of most arteriviruses (with the exception of EAV and WPDV) share a highly
510	conserved RNA-binding motif in nsp1 β , which is critical for nsp1 β 's function in -2/-1 PRF
511	transactivation (Fig. 1B). To further determine whether this is an evolutionarily conserved
512	mechanism in the Arteriviridae family, we evaluated the ability of PRRSV-1 nsp1 β to
513	transactivate frameshifting on the -2/-1 PRF signal from SHFV, and vice versa. In vitro

514	translation was performed in the RRL system with reporter mRNA of SHFV and $nsp1\beta$ protein
515	of PRRSV-1. As expected, -2 and -1 frameshift products were detected. Increasing
516	concentrations of PRRSV-1 nsp1 β led to dose-dependent expression of the two PRF products
517	(Fig. 10A left panel and 10B). Consistently, SHFV nsp1ß displayed similar activity to stimulate
518	-2/-1 PRF on the reporter mRNA of PRRSV-1 (Figure 10A, right panel).
519	To confirm that the PRF transactivation mechanism of $nsp1\beta$ is also conserved among other
520	arteriviruses, we included additional heterotypic $nsp1\beta s$ in the assay. The -2FS product was
521	detected in HEK-293T cells transfected with pDluc-SHFV/WT and a plasmid expressing $nsp1\beta$
522	from arterivirus of other species, including KRCV-1, PRRSV-1, PRRSV-2 and LDV. Again, the
523	-2FS product was detected; however, the -1FS product was not observed, which may be due to
524	the low efficiency of -1 PRF (Fig. 10C). No frameshifting product was detected in cells
525	expressing EAV nsp1. Since the canonical -2/-1 PRF signal was identified in viruses of all
526	known arteriviral species except EAV and WPDV, these data demonstrate that the transactivation
527	function of $nsp1\beta$ on -2/-1 PRF is evolutionarily conserved in non-EAV/WPDV arteriviruses.
528	

DISCUSSION

Arteriviruses are a group of mammalian positive-sense RNA viruses. Although most of them
have not been associated with overt disease, some arteriviruses cause acute respiratory syndrome,
abortion, lethal hemorrhagic fever, or neurological impairment (49-51). EAV, PRRSV-1, and
PRRSV-2 are veterinary pathogens with significant economic impact (7). PBJV, SHEV, and

534	SHFV are known etiologic agents of almost uniformly lethal viral hemorrhagic fever in
535	macaques (8). Most related simarteriviruses have not been identified as pathogens but their
536	infectivity for and transmission ability among nonhuman primates cause concern regarding
537	zoonotic transmission (14). Improved understanding of the biological characteristics of
538	arteriviruses would facilitate the development of disease control strategies and may also advance
539	our knowledge of the factors that drive zoonotic transmission of RNA viruses.
540	The arterivirus -2/-1 PRF and the involvement of a <i>trans</i> -activating viral protein and host
541	factors in ribosomal frameshifting are unprecedented in eukaryotic systems. Our recent studies
542	revealed that the PRF products of PRRSV, nsp2TF and nsp2N, are important for viral replication
543	On the other hand, these proteins function as innate immune antagonists, suggesting that
544	recombinant PRRSV with impaired nsp2TF/nsp2N expression could be developed as candidate
545	vaccines (52). In a recent comparative genomic study, conserved +1 and -2 PRF signals were
546	identified in the additional sex combs-like (ASXL) genes 1 and 2, respectively, and hypothesized
547	to be utilized for the expression of a conserved overlapping ORF via PRF (53). ASXL genes
548	encode important epigenetic and transcriptional regulatory proteins, and truncation or frameshift
549	mutants of ASXL are linked to myeloid malignancies and genetic diseases. This study highlights
550	the significance of the -2 PRF mechanism, suggesting that the mechanism could be more widely
551	employed in regulating viral/host gene expression.
552	Comparative genomic analysis of 19 arteriviruses revealed that the key elements for -2/-1
553	PRF, including the slippery sequence and downstream C-rich RNA motif, are highly conserved

554	in all known arteriviruses except EAV. Of note, the distance between the slippery sequence and
555	downstream C-rich RNA motif is consistently 9-10 nt in all non-EAV arteriviruses with the
556	exception of that of WPDV, which has a stretch that is 9 nucleotides longer. WPDV is
557	phylogenetically distant from other arteriviruses (54). It also lacks a long overlapping TF ORF
558	(36); thus, like EAV, WPDV most likely does not utilize frameshifting in this region of the nsp2
559	gene. Our experimental data indicate that a -2/-1 PRF mechanism similar to that used by PRRSV
560	is employed by simarteriviruses to express nsp2TF and/or nsp2N analogs. In addition, we also
561	experimentally demonstrated that $nsp1\beta$ proteins of other arteriviruses (KRCV-1, PRRSV-1,
562	PRRSV-2 and LDV, but not EAV) are able to stimulate ribosomal frameshifting on the SHFV
563	-2/-1 PRF RNA signal. These results indicate that -2/-1 PRF is an evolutionarily conserved
564	mechanism used by most arteriviruses for the expression of additional viral proteins.
565	Furthermore, in line with our previous study on PRRSV, at least nsp2TF plays an important role
566	in SHFV replication. Previous studies suggest that the N-terminal PLP2 domain shared by
567	nsp2-related proteins of arteriviruses (PRRSV-1, PRRSV-2, LDV, and SHFV) suppress host type
568	I IFN response through its deubiquitylation activity (30). In comparison with nsp2, PRRSV-2
569	nsp2TF and nsp2N displayed a stronger inhibitory effect on host innate immune responses (52).
570	Therefore, we suspect that SHFV nsp2TF and nsp2N may also play important roles in SHFV
571	infection and virus-host interaction.
572	Three variants of the G_GUU_UUU slippery sequence were identified in simarteriviruses,

namely U_GUU_UUU (DeMAV, KRTGV-1, and PBJV), G_GUC_UCU (KKCBV, KRCV-1,

574	KRCV-2, and MYBV-1) and U_UUC_UCU (FSVV, SHEV, and ZMbV-1). In the case of PRRSV,
575	we proposed that tandem slippage of ribosome-bound tRNAs on G_GUU_UUU allows complete
576	A-site re-pairing in both -1 and -2 frames (tRNA anticodon:mRNA codon pairing in 0-frame is
577	3'-AAG-5':5'- UUU-3'; single tRNA ^{Phe} isoacceptor AAG). In contrast, however, tandem slippage
578	of ribosome-bound tRNAs on G_GUC_UCU and U_UUC_UCU does not allow A-site re-pairing
579	in the -1 frame. Consistently, our results showed that the SHFV SS1 and SS2 mutants that mimic
580	these slippery sequence variants only permit -2 PRF. Thus, those simarteriviruses carrying the
581	slippery sequence of G_GUC_UCU or U_UUC_UCU are unlikely to be able to express nsp2N.
582	As indicated above, the SHFV nsp2N is predicted to be an innate immune antagonist. It will be
583	interesting to compare the pathogenicity of this group of simarteriviruses (lack of nsp2N
584	expression) with that of SHFV (expression of nsp2N).
585	PRRSV nsp1 β transactivates ribosomal frameshifting through a highly conserved α -helix
586	motif, in which a universally conserved arginine (Arg128 in PRRSV-2 and Arg134 in PRRSV-1)
587	is a key residue for nsp1 β activity (34, 45). Comparative sequence analysis of nsp1 β of 19
588	arteriviruses showed that the highly conserved α -helix motif to be present in all of them except
589	EAV and WPDV. In our study, we observed that SHFV nsp1 β stimulates -2/-1 PRF to express
590	nsp2TF and nsp2N, and an alanine substitution at Arg114 completely impairs this process.
591	Consistently, nsp1 β of KRCV-1, a newly isolated simarterivirus, is also capable of stimulating -2
592	PRF. Based on sequence alignment, Arg114 in SHFV nsp1 β is the corresponding residue to
593	Arg128 in PRRSV-2 and Arg134 in PRRSV-1, and this arginine is universally conserved among

594	all arteriviruses except EAV and WPDV. Besides this arginine, Tyr111 in SHFV is also highly
595	conserved among all arteriviruses except EAV and WPDV. Of note, alanine substitution
596	introduced at this residue in SHFV and at analogous residues in PRRSV-1 (Tyr131) and 2
597	(Tyr125) also impaired nsp1 β 's ability to stimulate -2/-1 PRF of both PRRSV-1 and PRRSV-2.
598	Remarkably, nsp1ßs from PRRSV-1, PRRSV-2, KRCV-1 and LDV are capable of stimulating
599	ribosomal frameshifting on the SHFV -2/-1 PRF signal. The amino acid sequence identity of
600	nsp1ßs among these arteriviruses ranges from 21.4% to 57.7%. However, in silico structure
601	prediction showed that, with the exception of EAV nsp1 and WPDV nsp1 β , all arteriviral nsp1 β s
602	share a similar 3D structure, and the conserved α -helix motif was also found in these predicted
603	structures. These data suggest that nsp1 β protein structure, especially the α -helix region, is
604	essential for its PRF transactivation function.
605	Cellular PCBPs were initially identified as interacting partners of PRRSV nsp1 β , nsp9 and
606	the genomic 5' untranslated region (5'-UTR) (55). Our recent study further explored the function
607	of PCBPs in enhancing -2/-1 PRF together with viral protein nsp1 β (35). We also observed that
608	the enhancement of -2/-1 PRF in SHFV is dependent on the addition of both viral $nsp1\beta$ and
609	PCBP2 in WGE (Fig. 7A). Interestingly, the frameshifting efficiencies for <u>-1 PRF</u> in WGE were
610	much higher than those observed using RRL. In our previous study on the PRRSV frameshift
611	signal (Napthine et al., 2016), we found efficient -2 PRF in RRL upon the addition of PRRSV
612	nsp1 β only. Additional supplementation with PCBP2 maintained -2 PRF but also led to an
613	increase in -1 PRF. We reasoned that RRL may already contain endogenous PCBPs, with a

614	balance of paralogs that favored -2 PRF over -1 PRF. Turning to WGE translations, we found that
615	supplementation with PCBP2 led preferentially to -1 PRF whereas supplementation with PCPB1
616	led preferentially to -2 PRF. This suggests that PCBP1 is the abundant form in RRL. Knockdown
617	of either PCBP1 or PCBP2 in mammalian cells using siRNAs produced consistent results. In the
618	current SHFV study, supplementation with PCBP2 could particularly promote -1 PRF in WGE
619	due to the absence of competing endogenous mammalian PCBP1 (compare Fig. 7B with Fig. 4D).
620	As we expected, the interaction between PCBP1/2 and nsp1 β was detected by
621	coimmunoprecipitation in HEK-293T cells (Fig. 8A and 8C). In SHFV-infected MARC-145 cells,
622	SHFV nsp1 β was also coimmunoprecipitated with endogenous PCBP2 (Fig. 8B). These data
623	suggest that PCBPs are required for efficient -2/-1 PRF in arteriviruses, and the interaction
624	between $nsp1\beta$ and PCBPs may be also required for the mechanism.
625	In conclusion, our study demonstrates that -2/-1 PRF is an evolutionarily conserved
626	mechanism used by distantly related arteriviruses for the expression of additional viral proteins;
627	and the PRF products are important for viral replication. This mechanism is unprecedented in
628	eukaryotic systems, not only with the efficient shift to the -2 frame, but also with the involvement
629	of a <i>trans</i> -activating viral protein factor $(nsp1\beta)$ and host cellular protein (PCBPs). Given the
630	crucial role of ribosome function in all living systems, the potential impact of the in-depth
631	characterization of this novel mechanism reaches beyond the field of virology.
632	

633 ACKNOWLEDGEMENT

634	We thank Dr. Eric J. Snijder (Leiden University Medical Center, Leiden, The Netherlands) for
635	helpful discussion. Special thanks to Dr. Asit K. Pattnaik (University of Nebraska-Lincoln,
636	Lincoln, Nebraska) for providing pcDNA TM 3.1 ⁽⁺⁾ plasmid containing human PCBP2 gene, and
637	Dr. Udeni Balasuriya (Louisiana State University, Baton Rouge, Louisiana) for providing mAb
638	12A4 against EAV nsp1. We would also like to thank Laura Bollinger of the IRF-Frederick for
639	critically editing the manuscript. This project was supported by Agriculture and Food Research
640	Initiative Competitive Grant no. 2015-67015-22969 from the USDA National Institute of Food
641	and Agriculture (to Y.F.), and Wellcome Trust grant [106207] and European Research Council
642	grant [646891] (to A.E.F.). This work was also funded in part through Battelle Memorial
643	Institute's prime contract with the US National Institute of Allergy and Infectious Diseases
644	(NIAID) under Contract No. HHSN272200700016I (to Y.C., J.H.K). Tao Wang is a visiting
645	scholar from Yangzhou University, Yangzhou, China, who is supported by China Scholarship
646	Council. The content of this publication does not necessarily reflect the views or policies of the
647	US Department of Health and Human Services, or the institutions and companies affiliated with
648	the authors.
649	

652 **REFERNCES**

653	1.	Snijder EJ, Kikkert M, Fang Y. 2013. Arterivirus molecular biology and pathogenesis. J
654		Gen Virol 94:2141-63.

655 2. International Committee on Taxonomy of Viruses (ICTV). 2018. Virus Taxonomy: 2018b
656 Release. https://talkictvonlineorg/taxonomy/.

Bunowska M, Biggs PJ, Zheng T, Perrott MR. 2012. Identification of a novel nidovirus
associated with a neurological disease of the Australian brushtail possum (Trichosurus

- vulpecula). Vet Microbiol 156:418-24.
- 4. Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, Zhu Y, Li Y,
- ⁶⁶¹ Zheng D, Zhang C, Su H, Zheng Y, Zhou H, Zhu G, Li H, Chmura A, Yang F, Daszak P,

662 Wang J, Liu Q, Jin Q. 2018. Comparative analysis of rodent and small mammal viromes

- to better understand the wildlife origin of emerging infectious diseases. Microbiome
- **664 6**:178.
- 5. Kuhn JH, Lauck M, Bailey AL, Shchetinin AM, Vishnevskaya TV, Bao Y, Ng TF,
- LeBreton M, Schneider BS, Gillis A, Tamoufe U, Diffo Jle D, Takuo JM, Kondov NO,
- 667 Coffey LL, Wolfe ND, Delwart E, Clawson AN, Postnikova E, Bollinger L, Lackemeyer
- 668 MG, Radoshitzky SR, Palacios G, Wada J, Shevtsova ZV, Jahrling PB, Lapin BA,
- 669 Deriabin PG, Dunowska M, Alkhovsky SV, Rogers J, Friedrich TC, O'Connor DH,
- 670 Goldberg TL. 2016. Reorganization and expansion of the nidoviral family Arteriviridae.
- 671 Arch Virol 161:755-68.

672	6.	Bailey AL, Lauck M, Ghai RR, Nelson CW, Heimbruch K, Hughes AL, Goldberg TL,
673		Kuhn JH, Jasinska AJ, Freimer NB, Apetrei C, O'Connor DH. 2016. Arteriviruses,
674		Pegiviruses, and Lentiviruses Are Common among Wild African Monkeys. J Virol
675		90:6724-6737.
676	7.	MacLachlan NJ, Dubovi EJ. 2017. Arteriviridae and Roniviridae, p 463-476, Fenner's
677		veterinary virology, 5th ed doi: <u>https://doi.org/10.1016/B978-0-12-800946-8.00025-8</u> .
678		Academic Press, Boston.
679	8.	Lauck M, Alkhovsky SV, Bào Y, Bailey AL, Shevtsova ZV, Shchetinin AM,
680		Vishnevskaya TV, Lackemeyer MG, Postnikova E, Mazur S, Wada J, Radoshitzky SR,
681		Friedrich TC, Lapin BA, Deriabin PG, Jahrling PB, Goldberg TL, O'Connor DH, Kuhn
682		JH. 2015. Historical outbreaks of simian hemorrhagic fever in captive macaques were
683		caused by distinct arteriviruses. J Virol 89:8082-7.
684	9.	Lauck M, Hyeroba D, Tumukunde A, Weny G, Lank SM, Chapman CA, O'Connor DH,
685		Friedrich TC, Goldberg TL. 2011. Novel, divergent simian hemorrhagic fever viruses in a
686		wild Ugandan red colobus monkey discovered using direct pyrosequencing. PLoS One
687		6:e19056.
688	10.	Lauck M, Sibley SD, Hyeroba D, Tumukunde A, Weny G, Chapman CA, Ting N, Switzer
689		WM, Kuhn JH, Friedrich TC, O'Connor DH, Goldberg TL. 2013. Exceptional simian
690		hemorrhagic fever virus diversity in a wild African primate community. J Virol
691		87:688-91.

692	11.	Bailey AL, Lauck M, Sibley SD, Pecotte J, Rice K, Weny G, Tumukunde A, Hyeroba D,
693		Greene J, Correll M, Gleicher M, Friedrich TC, Jahrling PB, Kuhn JH, Goldberg TL,
694		Rogers J, O'Connor DH. 2014. Two novel simian arteriviruses in captive and wild
695		baboons (Papio spp.). J Virol 88:13231-9.
696	12.	Wahl-Jensen V, Johnson JC, Lauck M, Weinfurter JT, Moncla LH, Weiler AM, Charlier O,
697		Rojas O, Byrum R, Ragland DR, Huzella L, Zommer E, Cohen M, Bernbaum JG, Cai Y,
698		Sanford HB, Mazur S, Johnson RF, Qin J, Palacios GF, Bailey AL, Jahrling PB, Goldberg
699		TL, O'Connor DH, Friedrich TC, Kuhn JH. 2016. Divergent Simian Arteriviruses Cause
700		Simian Hemorrhagic Fever of Differing Severities in Macaques. MBio 7:e02009-15.
701	13.	Buechler C, Semler M, Baker DA, Newman C, Cornish JP, Chavez D, Guerra B, Lanford
702		R, Brasky K, Kuhn JH, Johnson RF, O'Connor DH, Bailey AL. 2018. Subclinical
703		infection of macaques and baboons with a naboon simarterivirus. Viruses 10:701.
704	14.	Bailey AL, Lauck M, Sibley SD, Friedrich TC, Kuhn JH, Freimer NB, Jasinska AJ,
705		Phillips-Conroy JE, Jolly CJ, Marx PA, Apetrei C, Rogers J, Goldberg TL, O'Connor DH.
706		2016. Zoonotic Potential of Simian Arteriviruses. J Virol 90:630-5.
707	15.	Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the
708		largest RNA virus genome. Virus Res 117:17-37.
709	16.	Firth AE, Brierley I. 2012. Non-canonical translation in RNA viruses. J Gen Virol
710		93:1385-409.

711 17. Pasternak AO, Spaan WJ, Snijder EJ. 2006. Nidovirus transcription: how to make sense...?

712	J Gen Virol	87:1403-21.

713	18.	Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus
714		ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537-47.
715	19.	den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ. 1991.
716		Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J
717		Virol 65:2910-20.
718	20.	Li Y, Tas A, Sun Z, Snijder EJ, Fang Y. 2015. Proteolytic processing of the porcine
719		reproductive and respiratory syndrome virus replicase. Virus Res 202:48-59.
720	21.	Vatter HA, Di H, Donaldson EF, Radu GU, Maines TR, Brinton MA. 2014. Functional
721		analyses of the three simian hemorrhagic fever virus nonstructural protein 1 papain-like
722		proteases. J Virol 88:9129-40.
723	22.	Song T, Fang L, Wang D, Zhang R, Zeng S, An K, Chen H, Xiao S. 2016. Quantitative
724		interactome reveals that porcine reproductive and respiratory syndrome virus
725		nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular
726		vimentin. J Proteomics 142:70-81.
727	23.	Wang L, Zhou L, Zhang H, Li Y, Ge X, Guo X, Yu K, Yang H. 2014. Interactome profile
728		of the host cellular proteins and the nonstructural protein 2 of porcine reproductive and
729		respiratory syndrome virus. PLoS One 9:e99176.
730	24.	Xiao Y, Wu W, Gao J, Smith N, Burkard C, Xia D, Zhang M, Wang C, Archibald A,
731		Digard P, Zhou EM, Hiscox JA. 2016. Characterization of the Interactome of the Porcine

732		Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the
733		Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins. J
734		Proteome Res 15:1388-401.
735	25.	Fang Y, Fang L, Wang Y, Lei Y, Luo R, Wang D, Chen H, Xiao S. 2012. Porcine
736		reproductive and respiratory syndrome virus nonstructural protein 2 contributes to
737		NF-kappaB activation. Virol J 9:83.
738	26.	Sun Z, Li Y, Ransburgh R, Snijder EJ, Fang Y. 2012. Nonstructural protein 2 of porcine
739		reproductive and respiratory syndrome virus inhibits the antiviral function of
740		interferon-stimulated gene 15. J Virol 86:3839-50.
741	27.	Faaberg KS, Kehrli ME, Jr., Lager KM, Guo B, Han J. 2010. In vivo growth of porcine
742		reproductive and respiratory syndrome virus engineered nsp2 deletion mutants. Virus Res
743		154:77-85.
744	28.	Sun Z, Chen Z, Lawson SR, Fang Y. 2010. The cysteine protease domain of porcine
745		reproductive and respiratory syndrome virus nonstructural protein 2 possesses
746		deubiquitinating and interferon antagonism functions. J Virol 84:7832-46.
747	29.	van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M,
748		Snijder EJ, Mark BL, Kikkert M. 2013. Deubiquitinase function of arterivirus papain-like
749		protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad
750		Sci U S A 110:E838-47.
751	30.	van Kasteren PB, Beugeling C, Ninaber DK, Frias-Staheli N, van Boheemen S,

752		Garcia-Sastre A, Snijder EJ, Kikkert M. 2012. Arterivirus and nairovirus ovarian tumor
753		domain-containing Deubiquitinases target activated RIG-I to control innate immune
754		signaling. J Virol 86:773-85.
755	31.	Wassenaar AL, Spaan WJ, Gorbalenya AE, Snijder EJ. 1997. Alternative proteolytic
756		processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a
757		cofactor for the NSP4 serine protease. J Virol 71:9313-22.
758	32.	Snijder EJ, van Tol H, Roos N, Pedersen KW. 2001. Non-structural proteins 2 and 3
759		interact to modify host cell membranes during the formation of the arterivirus replication
760		complex. J Gen Virol 82:985-94.
761	33.	Fang Y, Treffers EE, Li Y, Tas A, Sun Z, van der Meer Y, de Ru AH, van Veelen PA,
762		Atkins JF, Snijder EJ, Firth AE. 2012. Efficient -2 frameshifting by mammalian
763		ribosomes to synthesize an additional arterivirus protein. Proc Natl Acad Sci U S A
764		109:E2920-8.
765	34.	Li Y, Treffers EE, Napthine S, Tas A, Zhu L, Sun Z, Bell S, Mark BL, van Veelen PA, van
766		Hemert MJ, Firth AE, Brierley I, Snijder EJ, Fang Y. 2014. Transactivation of
767		programmed ribosomal frameshifting by a viral protein. Proc Natl Acad Sci U S A
768		111:E2172-81.
769	35.	Napthine S, Treffers EE, Bell S, Goodfellow I, Fang Y, Firth AE, Snijder EJ, Brierley I.
770		2016. A novel role for poly(C) binding proteins in programmed ribosomal frameshifting.
771		Nucleic Acids Res 44:5491-503.

772	36.	Gulyaeva A, Dunowska M, Hoogendoorn E, Giles J, Samborskiy D, Gorbalenya AE.
773		2017. Domain Organization and Evolution of the Highly Divergent 5' Coding Region of
774		Genomes of Arteriviruses, Including the Novel Possum Nidovirus. J Virol 91.
775	37.	Lauck M, Palacios G, Wiley MR, L Y, Fang Y, Lackemeyer MG, Cai Y, Bailey AL,
776		Postnikova E, Radoshitzky SR, Johnson RF, Alkhovsky SV, Deriabin PG, Friedrich TC,
777		Goldberg TL, Jahrling PB, O'Connor DH, Kuhn JH. 2014. Genome Sequences of Simian
778		Hemorrhagic Fever Virus Variant NIH LVR42-0/M6941 Isolates (Arteriviridae:
779		Arterivirus). Genome Announc. 9:2(5).
780	38.	Go YY, Li Y, Chen Z, Han M, Yoo D, Fang Y, Balasuriya UB. 2014. Equine arteritis virus
781		does not induce interferon production in equine endothelial cells: identification of
782		nonstructural protein 1 as a main interferon antagonist. Biomed Res Int 2014:420658.
783	39.	Fixsen SM, Howard MT. 2010. Processive selenocysteine incorporation during synthesis
784		of eukaryotic selenoproteins. J Mol Biol 399:385-96.
785	40.	Li Y, Tas A, Snijder EJ, Fang Y. 2012. Identification of porcine reproductive and
786		respiratory syndrome virus ORF1a-encoded non-structural proteins in virus-infected cells.
787		J Gen Virol 93:829-39.
788	41.	Wagner HM, Balasuriya UB, James MacLachlan N. 2003. The serologic response of
789		horses to equine arteritis virus as determined by competitive enzyme-linked
790		immunosorbent assays (c-ELISAs) to structural and non-structural viral proteins. Comp
791		Immunol Microbiol Infect Dis 26:251-60.

792	42.	Guo R, Katz BB, Tomich JM, Gallagher T, Fang Y. 2016. Porcine Reproductive and
793		Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread. J Virol
794		90:5163-5175.
795	43.	Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints.
796		American journal of epidemiology 27:493-497.
797	44.	Li Y, Zhu L, Lawson SR, Fang Y. 2013. Targeted mutations in a highly conserved motif
798		of the nsp1beta protein impair the interferon antagonizing activity of porcine
799		reproductive and respiratory syndrome virus. J Gen Virol 94:1972-83.
800	45.	Li Y, Shyu DL, Shang P, Bai J, Ouyang K, Dhakal S, Hiremath J, Binjawadagi B,
801		Renukaradhya GJ, Fang Y. 2016. Mutations in a Highly Conserved Motif of nsp1beta
802		Protein Attenuate the Innate Immune Suppression Function of Porcine Reproductive and
803		Respiratory Syndrome Virus. J Virol 90:3584-99.
804	46.	Xue F, Sun Y, Yan L, Zhao C, Chen J, Bartlam M, Li X, Lou Z, Rao Z. 2010. The crystal
805		structure of porcine reproductive and respiratory syndrome virus nonstructural protein
806		Nsp1beta reveals a novel metal-dependent nuclease. J Virol 84:6461-71.
807	47.	Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein
808		structure and function prediction. Nat Methods 12:7-8.
809	48.	Wang S, Li W, Liu S, Xu J. 2016. RaptorX-Property: a web server for protein structure
810		property prediction. Nucleic Acids Res 44:W430-5.
811	49.	Shevtsova ZV, Krylova RI. 1971. [A comparative study of 2 strains of simian

812		hemorrhagic fever virus]. Vopr Virusol 16:686-8.
813	50.	Wensvoort G. 1993. Lelystad virus and the porcine epidemic abortion and respiratory
814		syndrome. Vet Res 24:117-24.
815	51.	Elazhary Y, Weber J, Bikour H, Morin M, Girard C. 1991. 'Mystery swine disease' in
816		Canada. Vet Rec 129:495-6.
817	52.	Li Y, Shang P, Shyu D, Carrillo C, Naraghi-Arani P, Jaing CJ, Renukaradhya GJ, Firth AE,
818		Snijder EJ, Fang Y. 2018. Nonstructural proteins nsp2TF and nsp2N of porcine
819		reproductive and respiratory syndrome virus (PRRSV) play important roles in
820		suppressing host innate immune responses. Virology 517:164-176.
821	53.	Dinan AM, Atkins JF, Firth AE. 2017. ASXL gain-of-function truncation mutants:
822		defective and dysregulated forms of a natural ribosomal frameshifting product? Biol
823		Direct 12:24.
824	54.	Vanmechelen B, Vergote V, Laenen L, Koundouno FR, Bore JA, Wada J, Kuhn JH,
825		Carroll MW, Maes P. 2018. Expanding the Arterivirus Host Spectrum: Olivier's Shrew
826		Virus 1, A Novel Arterivirus Discovered in African Giant Shrews. Sci Rep 8:11171.
827	55.	Beura LK, Dinh PX, Osorio FA, Pattnaik AK. 2011. Cellular poly(c) binding proteins 1
828		and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural
829		protein 1beta and support viral replication. J Virol 85:12939-49.
830	56.	Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of many
831		protein sequences. Protein Sci 27:135-145.

- 832 57. Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new
- 833 ENDscript server. Nucleic Acids Res 42:W320-4.

834

835

836 FIGURE LEGENDS

Figure 1. Bioinformatic analysis of -2/-1 programmed ribosomal frameshifting (PRF) RNA 837 signals and nsp1ß of arteriviruses. (A) The -2/-1 PRF signal, including slippery sequence 838 (orange) and downstream C-rich RNA motif (blue), identified in the nsp2 coding region of 839 840 arteriviruses. For each sequence, the genome coordinate of the first nucleotide in the alignment is specified. (**B**) A highly conserved α -helix motif in the papain-like cysteine protease β domain 841 842 $(PCP\beta)$ of arterivirus nsp1 β . The protein sequences of arterivirus nsp1 β s were predicted as described previously (36). Sequence alignment of arterivirus nsp1ßs was performed with Clustal 843 Omega (56), and the figure was created with ESPript 3 (57). The highly conserved α -helix motif 844 is indicated with a rectangle in black, and the residues in this motif targeted for mutagenesis are 845 marked with "#". For each sequence, the nsp1ß or nsp1 coordinate of the first amino acid in the 846 alignment is specified. (C) The 3D structures of arterivirus nsp1ßs predicted by the I-TASSER 847 server (47). The α -helix secondary structure of the highly conserved motif in ZMbV-1 nsp1 β was 848 also predicted with RaptorX server (48), shown as ZMbV-1_RaptorX. The representative virus 849 strains from 19 arteriviruses were included in the above bioinformatic analysis (2); their 850 851 GenBank accession numbers are: XH-GD (EU624117.1), PRRSV-2 (SD95-21; KC469618.1), PRRSV-1 (SD01-08; DQ489311.1), RatAV (KP280006.1), RatAV_Ningxia2015 (KU302440.1), 852 LDV-P (U15146.1), APRAV (NC_026439.1), SHFV (KM373784.1), KRTGV (JX473847.1), 853 PBJV (KR139838.1), DeMAV (KP126831.1), KRCV-1 (HQ845737.1), KRCV-2 (KC787631.1), 854 MYBV-1 (KM110935.1), KKCBV (KT447550.1), FSVV (KR862306.1), SHEV (KM677927.1), 855

856 ZMbV-1 (KT166441.1), EAV (X53459.3), WPDV (JN116253.3). The highly conserved α-helix
857 motif is highlighted in red.

858 Figure 2. SHFV nsp2-related proteins expressed in virus-infected MARC-145 cells. (A) The

859 C-terminal end of SHFV nsp2 predicted by sequence alignment of polyprotein 1a (pp1a) from

860 SD01-08 (PRRSV-1; DQ489311.1), SD95-21 (PRRSV-2; KC469618.1) and SHFV

(KM373784.1). SHFV nsp2 is predicted to be released from pp1a through a proteolytic cleavage

by the PLP2 domain. The cleavage site between SHFV nsp2 and nsp3 was predicted to be at

63 Gly1236/Gly1237. For each sequence, the pp1a coordinate of the last amino acid in the

alignment is specified. (**B**) A schematic diagram of putative SHFV nsp2, nsp2TF and nsp2N.

865 SHFV nsp2 is encoded by SHFV genomic region of nucleotide (nt) 1649~3901, whereas nsp2TF

866 (nt $1649 \sim 2860 + 2859 \sim 3536$) and nsp2N (nt $1649 \sim 2860 + 2860 \sim 3093$) are translated through -2

PRF and -1 PRF, respectively. The epitopes recognized by antibodies are pointed with black

arrows. (C) SHFV nsp2-related proteins detected by western blot analysis. MARC-145 cells

were infected with SHFV at an MOI of 0.01, and cell lysates were harvested at 36 hpi. The

nsp2-related products were detected by anti-PLP2 mAb 134-260, including nsp2, nsp2TF, nsp2N

and an unknown nsp2-related protein marked with "*". SHFV nsp2TF was also recognized by

rabbit pAb against the nsp2TF C-terminal peptide (nsp2TFC). (**D**) SHFV nsp2-related proteins

873 detected by immunoprecipitation and western blot analysis. MARC-145 cells were infected with

874 SHFV at an MOI of 0.01, and cell lysates were harvested at 36 hpi. The nsp2-related products

were immunoprecipitated (IP) using anti-PLP2 mAb 133-243 and probed by western blot (WB)

with anti-PLP2 mAb 134-260 and rabbit pAb anti-nsp2TFC. An unknown nsp2-related protein is
marked with "*".

878 Figure 3. Identification of key residues involved in PRF transactivation function of nsp1ß from SHFV and PRRSV. (A) Immunoprecipitation and western blot analysis of amino acid 879 residues critical for the transactivation function of SHFV nsp1β. HEK-293T cells were 880 co-transfected with a plasmid expressing HA-tagged SHFV nsp2 and a plasmid expressing 881 FLAG-tagged SHFV nsp1 β or mutants thereof. An empty vector (EV) was used as the control. 882 Whole cell lysates (WCLs) were harvested at 36 h post transfection (hpt). The expression of nsp2, 883 nsp2TF and nsp2N was detected by western blot (WB) using anti-HA mAb, while FLAG-tagged 884 nsp1β was detected using anti-FLAG mAb M2. The expression of HA-tagged nsp2TF was 885 further confirmed by IP using anti-HA mAb and WB detection using anti-nsp2TFC pAb. (B) 886 Immunoprecipitation and western blot analysis of amino acid residues critical for the 887 transactivation function of nsp1ß from PRRSV-1 and PRRSV-2. HEK-293T cells were 888 co-transfected with a plasmid expressing PRRSV nsp2 and a plasmid expressing FLAG-tagged 889 PRRSV nsp1ß or mutants thereof. An empty vector (EV) was used as a control. PRRSV 890 nsp2-related proteins were immunoprecipitated with anti-PRRSV PLP2 mAb. The expression of 891 nsp2, nsp2TF and nsp2N was evaluated by western blot using anti-PRRSV PLP2 domain mAb, 892 and FLAG-tagged nsp1ß was detected with anti-FLAG mAb M2. GAPDH was monitored as a 893 loading control. 894

Figure 4. SHFV nsp1β stimulates -2/-1 PRF in pDluc reporter systems. (A) A schematic

896	diagram of dual luciferase (pDluc) constructs. A 79-nt sequence (WT) containing the SHFV
897	putative slippery sequence and downstream C-rich motif was inserted between Renilla luciferase
898	(Rluc) and firefly luciferase (Fluc; in the -2 frame relative to Rluc) ORFs. The in-frame control
899	(IFC) construct was generated by inserting two Us after the slippery sequence. In addition to the
900	"stop" product translated without frameshifting, -2FS and -1FS products containing Renilla
901	luciferase could be translated via programmed -2 PRF and -1 PRF, respectively. (B)
902	Identification of critical residues in SHFV nsp1 β involved in -2/-1 PRF. HEK-293T cells were
903	co-transfected with plasmid pDluc-SHFV/WT containing wild type SHFV -2/-1 PRF signal and
904	a plasmid expressing SHFV nsp1 β or mutants thereof; empty vector (EV) was used as the control.
905	Non-frameshift, -1 PRF and -2 PRF products were detected by western blot using anti-Renilla
906	luciferase (Rluc) mAb, and are indicated as stop, -1FS and -2FS, respectively. FLAG-tagged
907	nsp1 β was detected with mAb M2 and GAPDH was detected as a loading control. (C)
908	SHFV/WT mRNA transcribed from plasmid pDluc-SHFV/WT was translated in RRL in the
909	presence of different concentrations of GST-tagged nsp1 β (μ M) or with dilution buffer (DB) as a
910	control. (D) Efficiencies of -2 PRF and -1 PRF were calculated based on the quantified bands
911	using ImageQuant TM TL software (GE Healthcare). (E) In vitro translation of SHFV/WT mRNA
912	was performed with 1 μ M GST-nsp1 β or its mutant. (C and E) In vitro translation products were
913	resolved in 12% SDS-PAGE and visualized by autoradiography. Products generated without
914	frameshifting or from -1 or -2 PRF are indicated as stop, -1FS and -2FS, respectively.
915	Figure 5. Tyr111 and Arg114 residues on SHFV nsp1 β are critical for -2/-1 PRF during

935 control. (C) In vitro translation of mRNA derived from the pDluc-SHFV/WT construct or its

936	mutant in the presence of GST-nsp1β. In vitro translation products were resolved in 12%
937	SDS-PAGE and visualized by autoradiography. Products generated without frameshifting or
938	from -1 or -2 PRF are indicated as stop, -1FS, and -2FS respectively. (D) The expression of
939	nsp2TF in KRCV-1 stimulated by nsp1β. HEK-293T cells were co-transfected with a plasmid
940	expressing HA-tagged KRCV-1 nsp2 and a plasmid expressing FLAG-tagged wild type nsp1 β ;
941	empty vector (EV) was used as a control. The expression of nsp2 and nsp2TF was detected by
942	western blot analysis using a mAb against HA-tag, and FLAG-tagged $nsp1\beta$ was detected with
943	FLAG M2 antibody. GAPDH was monitored as a loading control. (E) MARC-145 cells were
944	infected with SHFV or mutants (vSS1, vSS2, and vCC1) at an MOI of 0.01, and cell lysates were
945	harvested at 36 hpi. The nsp2-related products were detected by anti-PLP2 mAb 134-260. SHFV
946	nsp2TF was also detected by rabbit pAb against the nsp2TF C-terminal peptide (nsp2TFC).
947	GAPDH was monitored as a loading control.
948	Figure 7. Poly(rC) binding protein 2 enhances SHFV -2/-1 PRF in in vitro translation
949	systems. (A) In vitro translation of mRNA from plasmid pDluc-SHFV/WT in wheat germ extract
950	(WGE) in the presence of $nsp1\beta$, PCBP2 or both proteins. Translation of SHFV/WT mRNA in
951	RRL is also shown as a control. Products generated without frameshifting or from -1 or -2 PRF
952	are indicated as stop, -1FS and -2FS, respectively. (B) Efficiencies of -2 PRF and -1 PRF were
953	calculated based on the quantified bands using ImageQuant TM TL software (GE Healthcare).
954	Figure 8. SHFV nsp1 β binds to poly(rC) binding protein (PCBP) 1 and PCBP2. (A and C)

955 Ectopically expressed SHFV nsp1 β interacts with PCBP1 and PCBP2 in HEK-293T cells.

956	HEK-293T cells were transfected with a plasmid expressing FLAG-tagged SHFV nsp1 β or
957	empty vector. The interaction between $nsp1\beta$ and PCBP1/2 was determined by
958	immunoprecipitation (IP) using anti-FLAG M2 antibody and western blot (WB) analysis using
959	antibodies against PCBP1/2. (B) SHFV nsp1 β interacts with PCBP2 in virus-infected
960	MARC-145 cells. MARC-145 cells were infected with SHFV at an MOI of 0.01 and harvested at
961	36 hpi. The interaction between $nsp1\beta$ and PCBP2 was determined by immunoprecipitation (IP)
962	with anti-PCBP2 mAb and western blot (WB) analysis with mAb 76-69 against SHFV nsp1 β .
963	The expression of nsp1 β and PCBP1/2 was monitored by western blot analysis with specific
964	antibodies. WCL: whole cell lysate.
965	Figure 9. In vitro growth characterization of SHFV wild type and mutant viruses. (A)
966	Multiple-step virus growth curve of wild type (WT) and mutant viruses. Each data point shown
	Multiple-step virus growth curve of what type (WT) and indiant viruses. Each data point showh
967	represents the mean value from duplicated treatments. Error bars show standard errors of the
967 968	represents the mean value from duplicated treatments. Error bars show standard errors of the mean (SEM). (B) Plaque morphology of wild type (WT) SHFV and mutants thereof. Confluent
967 968 969	represents the mean value from duplicated treatments. Error bars show standard errors of the mean (SEM). (B) Plaque morphology of wild type (WT) SHFV and mutants thereof. Confluent cell monolayers were infected with 10-fold serial dilutions of the virus suspension. After 2 h
967 968 969 970	represents the mean value from duplicated treatments. Error bars show standard errors of the mean (SEM). (B) Plaque morphology of wild type (WT) SHFV and mutants thereof. Confluent cell monolayers were infected with 10-fold serial dilutions of the virus suspension. After 2 h incubation, an agar overlay was added on top of the infected cells. Plaques were observed after 3
967 968 969 970 971	represents the mean value from duplicated treatments. Error bars show standard errors of the mean (SEM). (B) Plaque morphology of wild type (WT) SHFV and mutants thereof. Confluent cell monolayers were infected with 10-fold serial dilutions of the virus suspension. After 2 h incubation, an agar overlay was added on top of the infected cells. Plaques were observed after 3 d of incubation at 37 °C. Cells were stained with 0.1% crystal violet.

972 Figure 10. Heterotypic arterivirus nsp1βs stimulate -2/-1 PRF at signals of divergent

973 **arteriviruses.** (A) Left panel: *In vitro* translation of mRNA from plasmid pDluc-SHFV/WT in

974 the presence of SHFV-nsp1 β (1 μ M), different concentrations of PRRSV-nsp1 β (from 0.5 μ M to

975 1.5 μM), or dilution buffer (DB). Right panel: *In vitro* translation of mRNA from plasmid

976	pDluc-PRRSV-1/WT in the presence of PRRSV-nsp1 β (1 μ M), different concentrations of
977	SHFV-nsp1 β (from 0.5 μ M to 1.5 μ M), or dilution buffer (DB). Products generated without PRF
978	or from -1 or -2 PRF are indicated as stop, -1FS and -2FS, respectively. (B) Quantification of
979	SHFV -2 PRF and -1 PRF efficiencies when stimulated by SHFV nsp1 β or PRRSV nsp1 β . FS
980	efficiencies were calculated based on the protein bands quantified by ImageQuant TM TL software
981	(GE Healthcare). Each data point shown represents the mean value from two independent
982	experiments, and error bars show standard errors of the mean (SEM). (C) Analysis of -2/-1
983	frameshifting at the SHFV PRF signal when stimulated by heterotypic arterivirus $nsp1\beta s$.
984	HEK-293T cells were co-transfected with the plasmid pDluc-SHFV/WT and a plasmid
985	expressing heterotypic nsp1β. Empty vector (EV) was used as a control. Non-frameshift, -1 PRF
986	and -2 PRF products (indicated as stop, -1FS and -2FS, respectively) were detected by western
987	blot using anti- <i>Renilla</i> luciferase mAb. FLAG-tagged nsp1 β was detected with mAb M2, and
988	EAV nsp1 was probed with mAb 12A4. GAPDH was detected as a loading control.
989	

A	PRRSV-2	3691-CA <mark>G</mark>	GUU	UUU	GAC	CUC	GUC				UCC	CAU	CUC	CCU
	PRRSV-1	3289-UG <mark>G</mark>	GUU	UUU	GAA	GUU	UAC				UCC	CAU	CUC	CCA
	RatAV	4075-AA <mark>G</mark>	GUU	UUU	GAA	AUC	ACC				UCC	CAU	CUC	CCU
	RatAV Ningxia2015	3558-CA <mark>G</mark>	GUU	UUU	GCC	GUC	GCA				UCC	CAC	CUC	CCU
	LDV-P	2836-CA <mark>G</mark>	GUU	UUU	CUC	UUG	UCC				UCC	CAU	CUC	CUC
	APRAV	3152-GC <mark>G</mark>	GUU	UUC	CGC	GUC	GUC				CCC	CGC	CUC	CUU
	SHFV	2659-CG <mark>G</mark>	GUU	UUU	GGC	UUG	UAC				CCC	CAG	CUC	CUU
	KRTGV	2521-GG <mark>U</mark>	GUU	UUU	GGA	UUG	CUA				CCC	CAC	AUC	CUU
	PBJV	2518-CG <mark>U</mark>	GUU	UUU	CAG	UAC	AAA				CCC	CAC	CUC	CUU
	DeMAV	2584-CG <mark>U</mark>	GUU	UUU	CAC	CUU	UAC				CCC	CAG	CUC	CUC
	KRCV-1	2557-CA <mark>G</mark>	GUC	UCU	CAC	CUC	CGG				CCC	CAC	CUC	CUC
	KRCV-2	2518-CA <mark>G</mark>	GUC	UCU	CGC	UUC	CAA				CCC	CAU	CUC	CUG
	MYBV-1	2524-AC <mark>G</mark>	GUC	UCU	CGA	AUC	CAG				CCC	CAG	CUC	CUG
	KKCBV	2521-CA <mark>G</mark>	GUC	UCU	CGU	GUC	AUG				CCC	CAU	CUC	CUU
	FSVV	2629-AA <mark>U</mark>	UUC	UCU	AGG	UUC	CUG				CCC	UAU	CUC	CUU
	SHEV	2680-GA <mark>U</mark>	UUC	UCU	CGG	UGC	UUG				CCC	UAU	CUC	CUU
	ZMbV-1	2879-GA <mark>U</mark>	UUC	UCU	CGG	UUU	CUG				CCC	UAU	CUC	CUU
	WPDV	2454-GC <mark>A</mark>	GUU	UUU	GAA	GCA	ACC	GUG	GGC	UGG	UCC	AAC	UCC	CUU

Slippery sequence

C-rich motif

D																										_				
D			ll	عع	le	l	Q														1	l	l	l	e	2			. –	
	XH-GD	103	QY	KEI	RH	• AN(Q.			FGY	QΤ							:	КН	• G V	PGI	ΧY	LQ	RF	LÇ	VN	GL	RA	. V	TDT
	PRRSV-2	103	QN	Κ <mark>ΕΙ</mark>	RH	ANQ	Q.			FGY	QT	·							КH	Gν	SGI	ΧY	LQ	RF	RLÇ	VN	Γ <mark>G</mark> Ι	RA	. V	TDL
	PRRSV-1	109	СҮ	ΗEΕ	ΗL	ANA	Α.			LGY	QT	• • •							ΚW	Gν	Η <mark>G</mark> Ι	ΧY	LQ	RF	RLÇ	VR	G. M	IRA	. V	VDP
	RatAV	100	FΕ	REV	RL	AV	Q.			FGY	QΤ	• • •							КH	Gν	Ρ <mark>G</mark> Ι	ΧY	IQ	RF	RLÇ	IN	Γ <mark>G</mark> Ι	RA	. V	VDP
	RatAV_Ningxia2015	100	QA	A <mark>E I</mark>	RT	AV	Ç.			FGY	QT	•••							КH	Gν	Ρ <mark>G</mark> Ι	ΧY	IQ	RF	RLÇ	VN	Γ <mark>G</mark> Ι	RA	. V	IDR
	LDV-P	102	AC	EEA	DL	ADI	R.			MGY	RΤ	•••							ΡA	Gν	AGI	2 Y	LΑ	RF	RLÇ	ΥR	GL	RA	. V	VKP
	APRAV	109	FS	RLV	ТΥ	VEZ	Α.			ΗGΕ	QΤ								RW	Gν	KSZ	ΑL	LN	RI	ĿF	'NH	GL	RI	. W	RHA
	SHFV	93		.EI	ТТ	AS:	г.			FGY	QL							!	NC	Gν	Q <mark>G</mark> I	ΧY	IA	RF	RLÇ	TN	Γ <mark>G</mark> Ι	ΓKL	. V	QNQ
	KRTGV	92		.EK	CI	AQ :	г.			FGY	QL							•••	ΤL	Gν	Q <mark>G</mark> I	ΧY	LS	RF	RAÇ	IN	Γ <mark>G</mark> Ι	KF	. V	HDS
	PBJV	93		.EI	SI	ASO	с.			FGY	QL								ΡI	Gν	Q <mark>G</mark> I	ΧY	ΙA	RF	λΓČ	IN	GL	κL	. V	LAD
	DeMAV	92		.EI	ΚV	AC	г.			FGY	QL								GΙ	Gν	Q <mark>G</mark> I	ΧY	IS	RF	RLÇ	IA	GC	ΚL	. V	YDS
	KRCV-1	91		.EI	SI	AR	Γ.			FGY	QL								ΡW	GΑ	Q <mark>G</mark> (GΥ	ΙM	RF	VA	IN	Γ <mark>G</mark> L	ΓKL	. V	ΚNΡ
	KRCV-2	92		.EI	ιLV	AR	Q.			MGY	QL								ΡY	Gν	Q <mark>G</mark> I	RY	LΑ	RF	RLÇ	CS	GL	κL	. V	RKS
	MYBV-1	92		. E M	RV	AL	г.			FGY	QI	G.						'	ΤL	Gν	Q <mark>G</mark> I	ΧY	IS	RF	RAÇ	IN	Γ <mark>G</mark> Ι	KF	. V	HDT
	KKCBV	92		.EF	RI	AS:	г.			FGY	QL	Α.						1	ΝI	Gν	Ρ <mark>G</mark> Ι	ΧY	ΙA	RF	λΓČ	IN	Γ <mark>G</mark> L	κL	. V	HDA
	FSVV	91		.EV	SI	AA	с.			FGY	LΜ	1							ΡW	GΑ	Q <mark>G</mark> Z	ΑY	IS	RF	RLÇ	LN	[<mark>G</mark> S	ΚL	. V	RNP
	SHEV	91		.EV	ΚV	AGO	с.			FGY	LΜ	1		• •					ΡW	GΑ	Q <mark>G</mark> Z	ΑY	IS	RF	RLÇ	I D	GS	ΚL	. V	RNP
	ZMbV-1	91		.EV	ΚV	A G (с.			FGY	LΜ	1							ΡW	GΑ	Q <mark>G</mark> Z	ΑY	IS	RF	λΓζ	VD	GS	ΚL	. V	RDP
	WPDV	34			. I	ΚYΙ	ΗF	GΚ	LQ	ΤGΥ	LΡ	LΜ	IPV	VP	GKF	KNN	LL	HC	ΡV	GL	V <mark>G</mark> S	SΑ	AD.	ΑI	KK	(R Y	GI	SF	ΡV	ANK
	EAV	36		.EA	GL	RL	Υ.	.Y	ΝH	Y RE	QR								[.Т	GW	ILS	ΚI	GΙ	RL	. W	LGD
	consensus>70			.е.		a.		•••		fgy	q.						• •			gv	. g	• У		rr	:19	[· ·	G.	• •	. v	. d .

