4,944 research outputs found

    Protecting the SWAP\sqrt{SWAP} operation from general and residual errors by continuous dynamical decoupling

    Full text link
    We study the occurrence of errors in a continuously decoupled two-qubit state during a SWAP\sqrt{SWAP} quantum operation under decoherence. We consider a realization of this quantum gate based on the Heisenberg exchange interaction, which alone suffices for achieving universal quantum computation. Furthermore, we introduce a continuous-dynamical-decoupling scheme that commutes with the Heisenberg Hamiltonian to protect it from the amplitude damping and dephasing errors caused by the system-environment interaction. We consider two error-protection settings. One protects the qubits from both amplitude damping and dephasing errors. The other features the amplitude damping as a residual error and protects the qubits from dephasing errors only. In both settings, we investigate the interaction of qubits with common and independent environments separately. We study how errors affect the entanglement and fidelity for different environmental spectral densities.Comment: Extended version of arXiv:1005.1666. To appear in PR

    Certified quantum non-demolition measurement of material systems

    Full text link
    An extensive debate on quantum non-demolition (QND) measurement, reviewed in Grangier et al. [Nature, {\bf 396}, 537 (1998)], finds that true QND measurements must have both non-classical state-preparation capability and non-classical information-damage tradeoff. Existing figures of merit for these non-classicality criteria require direct measurement of the signal variable and are thus difficult to apply to optically-probed material systems. Here we describe a method to demonstrate both criteria without need for to direct signal measurements. Using a covariance matrix formalism and a general noise model, we compute meter observables for QND measurement triples, which suffice to compute all QND figures of merit. The result will allow certified QND measurement of atomic spin ensembles using existing techniques.Comment: 11 pages, zero figure

    Robustness against parametric noise of non ideal holonomic gates

    Get PDF
    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the very motivation of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio et al. [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of non ideal holonomic gates at finite operational time, i.e., far before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite time gates. The obtained results suggest that the finite time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of geometrical feature.Comment: 8 pages, 8 figures, several changes made, accepted for publication on Phys. Rev.

    Identification of black sturgeon caviar pigment as eumelanin

    Get PDF
    Reported herein is the purification of the pigment of black sturgeon caviar and its unambiguous identification as a typical eumelanin by means of chemical degradation coupled with electron paramagnetic resonance (EPR) evidence. HPLC and LC-MS analysis of oxidative degradation mixtures revealed the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA), a specific marker of eumelanin pigments, in yields compatible with a 6.5% w/w pigment content. EPR spectral features and parameters were in close agreement with those reported for a typical natural eumelanin such as Sepia melanin from squid ink. The identification for the first time of eumelanin in a fish roe is expected to provide a novel molecular basis for the valorization of black caviar and production wastes thereof in food chemistry and diet

    (E)-1-(4-Meth­oxy­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

    Get PDF
    The title compound, C19H20O5, was synthesized by reaction of 4-meth­oxy­acetophenone and 3,4,5-trimeth­oxy-benzaldehyde. The aromatic rings form a dihedral angle of 36.39 (7)°. Two intramolecular C—H⋯O hydrogen bonds occur. The crystal packing features weak C—H⋯O inter­actions

    Protecting a quantum state from environmental noise by an incompatible finite-time measurement

    Full text link
    We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.Comment: REVISED VERSION: 37 pages, 3 figure

    Probing the Environment with Galaxy Dynamics

    Get PDF
    I present various projects to study the halo dynamics of elliptical galaxies. This allows one to study the outer mass and orbital distributions of ellipticals in different environments, and the inner distributions of groups and clusters themselves.Comment: 5 pages, 2 figs, to appear in Proc. ESO Workshop, Groups of Galaxies in the Nearby Universe (5-9 Dec 2005), eds. I. Saviane, V. Ivanov & J. Borissova (Springer-Verlag

    KiDS-i-800: Comparing weak gravitational lensing measurements in same-sky surveys

    Get PDF
    We present a weak gravitational lensing analysis of 815 square degree of ii-band imaging from the Kilo-Degree Survey (KiDS-ii-800). In contrast to the deep rr-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-rr-450), the complementary yet shallower KiDS-ii-800 spans a wide range of observing conditions. The overlapping KiDS-ii-800 and KiDS-rr-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis, we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-ii-800 and KiDS-rr-450 shear measurements agree at the level of 1±41 \pm 4\%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-ii-800 and KiDS-rr-450 surveys and find that the measurements agree to 7±57 \pm 5\% when the KiDS-ii-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.Comment: 24 pages, 20 figures. Submitted to MNRAS. Comments welcom
    corecore