942 research outputs found

    Crossover from a fission-evaporation scenario towards multifragmentation in spallation reactions

    Get PDF
    Mostly for the purpose of applications for the energy and the environment and for the design of sources of neutrons or exotic nuclides, intense research has been dedicated to spallation, induced by protons or light projectiles at incident energies of around 1 GeV. In this energy range, while multifragmentation has still a minor share in the total reaction cross section, it was observed to have, together with fission, a prominent role in the production and the kinematics of intermediate-mass fragments, so as to condition the whole production of light and heavy nuclides. The experimental observables we dispose of attribute rather elusive properties to the intermediate-mass fragments and do not allow to classify them within one exclusive picture which is either multifragmentation or fission. Indeed, these two decay mechanisms, driven by different kinds of instabilities, exhibit behaviours which are closely comparable. High-resolution measurements of the reaction kinematics trace the way for probing finer features of the reaction kinematics.Comment: Conference proceedings: International Meeting "Selected topics on nuclear methods for non-nuclear applications", September 27-30, 2006, Varna (Bulgaria). Invited tal

    Inhomogeneity growth in two-component fermionic systems

    Full text link
    The dynamics of fermionic many-body systems is investigated in the framework of Boltzmann-Langevin (BL) stochastic one-body approaches. Within the recently introduced BLOB model, we examine the interplay between mean-field effects and two-body correlations, of stochastic nature, for nuclear matter at moderate temperature and in several density conditions, corresponding to stable or mechanically unstable situations. Numerical results are compared to analytic expectations for the fluctuation amplitude of isoscalar and isovector densities, probing the link to the properties of the employed effective interaction, namely symmetry energy (for isovector modes) and incompressibility (for isoscalar modes). For unstable systems, clusterization is observed. The associated features are compared to analytical results for the typical length and time scales characterizing the growth of unstable modes in nuclear matter and for the isotopic variance of the emerging fragments. We show that the BLOB model is generally better suited than simplified approaches previously introduced to solve the BL equation, and it is therefore more advantageous in applications to open systems, like heavy ion collisions.Comment: 19 pages, 13 figure

    Bifurcations in Boltzmann-Langevin One Body dynamics for fermionic systems

    Full text link
    We investigate the occurrence of bifurcations in the dynamical trajectories depicting central nuclear collisions at Fermi energies. The quantitative description of the reaction dynamics is obtained within a new transport model, based on the solution of the Boltzmann-Langevin equation in three dimensions, with a broad applicability for dissipative fermionic dynamics. Dilute systems formed in central collisions are shown to fluctuate between two energetically favourable mechanisms: reverting to a compact shape or rather disintegrating into several fragments. The latter result can be connected to the recent observation of bimodal distributions for quantities characterising fragmentation processes and may suggest new investigations

    Mean-field instabilities and cluster formation in nuclear reactions

    Full text link
    We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to a cluster formation process which competes with important re-aggregation effects

    Spinodal instability growth in new stochastic approaches

    Full text link
    Are spinodal instabilities the leading mechanism in the fragmentation of a fermionic system? Numerous experimental indications suggest such a scenario and stimulated much effort in giving a suitable description, without being finalised in a dedicated transport model. On the one hand, the bulk character of spinodal behaviour requires an accurate treatment of the one-body dynamics, in presence of mechanical instabilities. On the other hand, pure mean-field implementations do not apply to situations where instabilities, bifurcations and chaos are present. The evolution of instabilities should be treated in a large-amplitude framework requiring fluctuations of Langevin type. We present new stochastic approaches constructed by requiring a thorough description of the mean-field response in presence of instabilities. Their particular relevance is an improved description of the spinodal fragmentation mechanism at the threshold, where the instability growth is frustrated by the mean-field resilience.Comment: Conf. proc. IWM2014-EC, Catania, 6-9 May 201

    Editorial

    Get PDF

    Health libraries in the post-pandemic world

    Get PDF

    Editorial

    Get PDF
    • …
    corecore