1,305 research outputs found

    Trees and Markov convexity

    Full text link
    We show that an infinite weighted tree admits a bi-Lipschitz embedding into Hilbert space if and only if it does not contain arbitrarily large complete binary trees with uniformly bounded distortion. We also introduce a new metric invariant called Markov convexity, and show how it can be used to compute the Euclidean distortion of any metric tree up to universal factors

    Measured descent: A new embedding method for finite metrics

    Full text link
    We devise a new embedding technique, which we call measured descent, based on decomposing a metric space locally, at varying speeds, according to the density of some probability measure. This provides a refined and unified framework for the two primary methods of constructing Frechet embeddings for finite metrics, due to [Bourgain, 1985] and [Rao, 1999]. We prove that any n-point metric space (X,d) embeds in Hilbert space with distortion O(sqrt{alpha_X log n}), where alpha_X is a geometric estimate on the decomposability of X. As an immediate corollary, we obtain an O(sqrt{(log lambda_X) \log n}) distortion embedding, where \lambda_X is the doubling constant of X. Since \lambda_X\le n, this result recovers Bourgain's theorem, but when the metric X is, in a sense, ``low-dimensional,'' improved bounds are achieved. Our embeddings are volume-respecting for subsets of arbitrary size. One consequence is the existence of (k, O(log n)) volume-respecting embeddings for all 1 \leq k \leq n, which is the best possible, and answers positively a question posed by U. Feige. Our techniques are also used to answer positively a question of Y. Rabinovich, showing that any weighted n-point planar graph embeds in l_\infty^{O(log n)} with O(1) distortion. The O(log n) bound on the dimension is optimal, and improves upon the previously known bound of O((log n)^2).Comment: 17 pages. No figures. Appeared in FOCS '04. To appeaer in Geometric & Functional Analysis. This version fixes a subtle error in Section 2.

    Locality of not-so-weak coloring

    Get PDF
    Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logn)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ω(logn)\Omega(\log n) rounds with deterministic and Ω(loglogn)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any d1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as k2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which k3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when dkd \gg k. The same was known previously for partial cc-coloring with c4c \ge 4, but the case of c<4c < 4 was open

    Exact bounds for distributed graph colouring

    Full text link
    We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with nn colours, by prior work it is known that we can find a proper 3-colouring in 12log(n)±O(1)\frac{1}{2} \log^*(n) \pm O(1) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many nn the time complexity is precisely 12logn\frac{1}{2} \log^* n communication rounds.Comment: 16 pages, 3 figure

    How Long It Takes for an Ordinary Node with an Ordinary ID to Output?

    Full text link
    In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity.Comment: (Submitted) Journal versio

    Nonlinear spectral calculus and super-expanders

    Get PDF
    Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Cesaro averages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.Comment: Typos fixed based on referee comments. Some of the results of this paper were announced in arXiv:0910.2041. The corresponding parts of arXiv:0910.2041 are subsumed by the current pape

    Distributed Computing in the Asynchronous LOCAL model

    Full text link
    The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task TT associated to a locally checkable labeling (LCL), if TT is solvable in tt rounds in the LOCAL model, then TT remains solvable in O(t)O(t) rounds in the asynchronous LOCAL model. This improves the result by Casta\~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP

    A new method for constructing small-bias spaces from Hermitian codes

    Full text link
    We propose a new method for constructing small-bias spaces through a combination of Hermitian codes. For a class of parameters our multisets are much faster to construct than what can be achieved by use of the traditional algebraic geometric code construction. So, if speed is important, our construction is competitive with all other known constructions in that region. And if speed is not a matter of interest the small-bias spaces of the present paper still perform better than the ones related to norm-trace codes reported in [12]
    corecore