5 research outputs found

    Evidence of causality of low body mass index on risk of adolescent idiopathic scoliosis: a Mendelian randomization study

    Get PDF
    IntroductionAdolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated.Material and methodsMendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese.ResultsSignificant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI.ConclusionsOur Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS

    Dimethyl fumarate ameliorates chemotherapy agent-induced neurotoxicity in vitro

    No full text
    Chemotherapy agents such as oxaliplatin, cisplatin, paclitaxel, and bortezomib frequently cause severe peripheral neuropathy and there is currently no effective strategy to prevent this. Dimethyl fumarate (DMF) is a new oral drug for the treatment of multiple sclerosis, and has neuroprotective effects via up-regulation of the nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response. In this study, we investigated the effect of DMF on chemotherapy agent-induced neurodegenerations in cultured cells. We found that DMF and its metabolite monomethyl fumarate (MMF) attenuated oxaliplatin-, cisplatin-, and bortezomib- (but not paclitaxel-) induced inhibition of neurite outgrowth, but had no effect on cell death as a result of these agents in cultured PC12 cells and primary cultured rat dorsal root ganglion (DRG) neurons. Furthermore, Nrf2 DNA binding activity was increased by DMF and MMF in PC12 cells. These findings suggest that DMF, which activates Nrf2 pathway, has a potential protective action against chemotherapy-induced neurotoxicity, particularly neurite impairments. Keywords: Dimethyl fumarate, Neurotoxicity, Oxaliplatin, Chemotherapy agents, Nuclear factor-erythroid-2-related factor 2 (Nrf2
    corecore