18 research outputs found
Promoting the functional maturation of human iPS cell-derived retinal ganglion cells with a 3D/2D stepwise differentiation protocol
International audienc
Establishment of an induced pluripotent stem (iPS) cell line from dermal fibroblasts of an asymptomatic patient with dominant PRPF31 mutation
A human iPS cell line was generated from fibroblasts of a phenotypically unaffected patient from a family with PRPF31-associated retinitis pigmentosa (RP). The transgene-free iPS cells were generated with the human OSKM transcription factors using the Sendai-virus reprogramming system. iPS cells contained the expected c.709-734dup substitution in exon 8 of PRPF31, expressed the expected pluripotency markers, displayed in vivo differentiation potential to the three germ layers and had normal karyotype. This cellular model will provide a powerful tool to study the unusual pattern of inheritance of PRPF31-associated RP
Generation of an induced pluripotent stem cell (iPSC) line from a patient with autosomal dominant retinitis pigmentosa due to a mutation in the NR2E3 gene
International audienceA human iPSC line was generated from fibroblasts of a patient affected with autosomal dominant Retinitis Pigmentosa (RP) carrying the mutation p.Gly56Arg in the NR2E3 gene. The transgene-free iPSCs were generated with the human OSKM transcription factors using the Sendai-virus reprogramming system. iPSCs contained the expected c.166G>A substitution in exon 2 of NR2E3, expressed the expected pluripotency markers, displayed in vivo differentiation potential to the three germ layers and had normal karyotype. This cellular model will provide a powerful tool to study the pathogenesis of NR2E3-associated RP
Dynamic full-field optical coherence tomography allows live imaging of retinal pigment epithelium stress model
International audienceAbstract Retinal degenerative diseases lead to the blindness of millions of people around the world. In case of age-related macular degeneration (AMD), the atrophy of retinal pigment epithelium (RPE) precedes neural dystrophy. But as crucial as understanding both healthy and pathological RPE cell physiology is for those diseases, no current technique allows subcellular in vivo or in vitro live observation of this critical cell layer. To fill this gap, we propose dynamic full-field OCT (D-FFOCT) as a candidate for live observation of in vitro RPE phenotype. In this way, we monitored primary porcine and human stem cell-derived RPE cells in stress model conditions by performing scratch assays. In this study, we quantified wound healing parameters on the stressed RPE, and observed different cell phenotypes, displayed by the D-FFOCT signal. In order to decipher the subcellular contributions to these dynamic profiles, we performed immunohistochemistry to identify which organelles generate the signal and found mitochondria to be the main contributor to D-FFOCT contrast. Altogether, D-FFOCT appears to be an innovative method to follow degenerative disease evolution and could be an appreciated method in the future for live patient diagnostics and to direct treatment choice
Reprogramming of Adult Retinal MĂŒller Glial Cells into Human-Induced Pluripotent Stem Cells as an Efficient Source of Retinal Cells
International audienceThe reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) has broad applications in regenerative medicine. The generation of self-organized retinal structures from these iPSCs offers the opportunity to study retinal development and model-specific retinal disease with patient-specific iPSCs and provides the basis for cell replacement strategies. In this study, we demonstrated that the major type of glial cells of the human retina, MĂŒller cells, can be reprogrammed into iPSCs that acquire classical signature of pluripotent stem cells. These MĂŒller glial cell-derived iPSCs were able to differentiate toward retinal fate and generate concomitantly retinal pigmented epithelial cells and self-forming retinal organoid structures containing retinal progenitor cells. Retinal organoids recapitulated retinal neurogenesis with differentiation of retinal progenitor cells into all retinal cell types in a sequential overlapping order. With a modified retinal maturation protocol characterized by the presence of serum and high glucose levels, our study revealed that the retinal organoids contained pseudolaminated neural retina with important features reminiscent of mature photoreceptors, both rod and cone subtypes. This advanced maturation of photoreceptors not only supports the possibility to use 3D retinal organoids for studying photoreceptor development but also offers a novel opportunity for disease modeling, particularly for inherited retinal diseases
From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium
International audienc
Establishment of an induced pluripotent stem (iPS) cell line from dermal fibroblasts of an asymptomatic patient with dominant PRPF31 mutation
A human iPS cell line was generated from fibroblasts of a phenotypically unaffected patient from a family with PRPF31-associated retinitis pigmentosa (RP). The transgene-free iPS cells were generated with the human OSKM transcription factors using the Sendai-virus reprogramming system. iPS cells contained the expected c.709-734dup substitution in exon 8 of PRPF31, expressed the expected pluripotency markers, displayed in vivo differentiation potential to the three germ layers and had normal karyotype. This cellular model will provide a powerful tool to study the unusual pattern of inheritance of PRPF31-associated RP
Bankable human iPSC-derived retinal progenitors represent a valuable source of multipotent cells
Abstract Retinal progenitor cells (RPCs) are the source of all retinal cell types during retinogenesis. Until now, the isolation and expansion of RPCs has been at the expense of their multipotency. Here, we report simple methods and media for the generation, expansion, and cryopreservation of human induced pluripotent stem-cell derived-RPCs (hiRPCs). Thawed and passed hiRPCs maintained biochemical and transcriptional RPC phenotypes and their ability to differentiate into all retinal cell types. Specific conditions allowed the generation of large cultures of photoreceptor precursors enriched up to 90% within a few weeks and without a purification step. Combined RNA-seq analysis between hiRPCs and retinal organoids identified genes involved in developmental or degenerative retinal diseases. Thus, hiRPC lines could provide a valuable source of retinal cells for cell-based therapies or drug discovery and could be an advanced cellular tool to better understand retinal dystrophies
Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids
International audienc