45 research outputs found

    Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas

    Full text link
    It was demonstrated that low pressure (~0.2 Torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features which are not explained by conventional plasma models. First, significant (> 0.25 nm) hydrogen Balmer_ line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges was explained by some researchers to result from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again, at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.Comment: 27 pages, 7 figure

    Experimental measurement of specific impulse distribution and transient deformation of plates subjected to near-field explosive blasts

    Get PDF
    The shock wave generated from a high explosive detonation can cause significant damage to any objects that it encounters, particularly those objects located close to the source of the explosion. Understanding blast wave development and accurately quantifying its effect on structural systems remains a considerable challenge to the scientific community. This paper presents a comprehensive experimental study into the loading acting on, and subsequent deformation of, targets subjected to near-field explosive detonations. Two experimental test series were conducted at the University of Sheffield (UoS), UK, and the University of Cape Town (UCT), South Africa, where blast load distributions using Hopkinson pressure bars and dynamic target deflections using digital image correlation were measured respectively. It is shown through conservation of momentum and Hopkinson-Cranz scaling that initial plate velocity profiles are directly proportional to the imparted impulse distribution, and that spatial variations in loading as a result of surface instabilities in the expanding detonation product cloud are significant enough to influence the transient displacement profile of a blast loaded plate

    Buoyancy- and pressure-driven motion in a vertical porous layer: Effects of quadratic drag

    No full text
    The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region. © 1995 Kluwer Academic Publishers
    corecore