34 research outputs found

    Brucella abortus Strain RB51 Vaccine: Immune Response after Calfhood Vaccination and Field Investigation in Italian Cattle Population

    Get PDF
    Immune response to Brucella abortus strain RB51 vaccine was measured in cattle vaccinated at calfhood. After an increase at day 6 post-vaccination (pv), the antibody level recorded in the 10 vaccinated animals remained constant for two months, and then progressively decreased. All vaccinated animals remained negative from day 162 pv to the end of the study (day 300 pv). Only at days 13 and 14 pv the RB51-CFT showed 100% sensitivity (credibility interval (CI) 76.2%–100%). The results indicate that the possibility to use RB51-CFT for the identification of cattle vaccinated at calfhood with RB51 is limited in time. A field investigation was carried out on 26,975 sera collected on regional basis from the Italian cattle population. The study outcomes indicate that in case of RB51-CFT positive results observed in officially Brucellosis-free (OBF) areas and, in any case, when an illegal use of RB51 vaccine is suspected, the use of the RB51-CFT alone is not sufficient to identify all the vaccinated animals. The design of a more sophisticated diagnostic protocol including an epidemiological investigation, the use of RB51-CFT, and the use of the skin test with RB51 as antigen is deemed more appropriate for the identification of RB51 vaccinated animals

    Whole exome sequencing (WES) on formalin-fixed, paraffin-embedded (FFPE) tumor tissue in gastrointestinal stromal tumors (GIST)

    Get PDF
    Next generation sequencing (NGS) technology has been rapidly introduced into basic and translational research in oncology, but the reduced availability of fresh frozen (FF) tumor tissues and the poor quality of DNA extracted from formalin-fixed, paraffin-embedded (FFPE) has significantly impaired this process in the field of solid tumors. To evaluate if data generated from FFPE material can be reliably produced and potentially used in routine clinical settings, we performed whole exome sequencing (WES) from tumor samples of Gastrointestinal stromal tumors (GIST), either extracted FF or FFPE, and from matched normal DNA

    Investigation of the molecular mechanisms which contribute to the survival of the polychaete Platynereis spp. under ocean acidification conditions in the CO2 vent system of Ischia Island (Italy)

    Get PDF
    The continuous increase of CO2 emissions in the atmosphere due to anthropogenic activities is one of the most important factors that contribute to Climate Change and generates the phenomenon known as Ocean Acidification (OA). Research conducted at the CO2 vents of Castello Aragonese (Ischia, Italy), which represents a natural laboratory for the study of OA, demonstrated that some organisms, such as polychaetes, thrive under acidified conditions through different adaptation mechanisms. Some functional and ecological traits promoting tolerance to acidification in these organisms have been identified, while the molecular and physiological mechanisms underlying acclimatisation or genetic adaptation are still largely unknown. Therefore, in this study we investigated epigenetic traits, as histone acetylation and methylation, in Platynereis spp. individuals coming from the Castello vent, and from a nearby control site, in two different periods of the year (November-June). Untargeted metabolomics analysis was also carried out in specimens from the two sites. We found a different profile of acetylation of H2B histone in the control site compared to the vent as a function of the sampling period. Metabolomic analysis showed clear separation in the pattern of metabolites in polychaetes from the control site with respect to those from the Castello vent. Specifically, a significant reduction of lipid/sterols and nucleosides was measured in polychaetes from the vent. Overall results contribute to better understand the potential metabolic pathways involved in the tolerance to OA

    Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations

    Get PDF
    Purpose:A subset of patients with KIT/PDGFRA wild-type gastrointestinal stromal tumors show loss of function of succinate dehydrogenase, mostly due to germ-line mutations of succinate dehydrogenase subunits, with a predominance of succinate dehydrogenase subunit A. The clinical outcome of these patients seems favorable, as reported in small series in which patients were individually described. This work evaluates a retrospective survival analysis of a series of patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors.Methods:Sixty-nine patients with metastatic gastrointestinal stromal tumors were included in the study (11 KIT/PDGFRA wild-type, of whom 6 were succinate dehydrogenase deficient, 5 were non-succinate dehydrogenase deficient, and 58 were KIT/PDGFRA mutant). All six succinate dehydrogenase-deficient patients harbored SDHA mutations. Kaplan-Meier curves and log-rank tests were used to compare the survival of patients with succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors with that of KIT/PDGFRA wild-type patients without succinate dehydrogenase deficiency and patients with KIT/PDGFRA-mutant gastrointestinal stromal tumors.Results:Follow-up ranged from 8.5 to 200.7 months. The difference between succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors and KIT/PDGFRA-mutant or KIT/PDGFRA wild-type non-succinate dehydrogenase deficient gastrointestinal stromal tumors was significant considering different analyses (P = 0.007 and P = 0.033, respectively, from diagnosis of gastrointestinal stromal tumor for the whole study population; P = 0.005 and P = 0.018, respectively, from diagnosis of metastatic disease for the whole study population; P = 0.007 for only patients who were metastatic at diagnosis).Conclusion:Patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors harboring succinate dehydrogenase subunit A mutations present an impressively long survival. These patients should be identified in clinical practice to better tailor treatments and follow-up over time A subset of patients with KIT/PDGFRA wild-type gastrointestinal stromal tumors show loss of function of succinate dehydrogenase, mostly due to germ-line mutations of succinate dehydrogenase subunits, with a predominance of succinate dehydrogenase subunit A. The clinical outcome of these patients seems favorable, as reported in small series in which patients were individually described. This work evaluates a retrospective survival analysis of a series of patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors.Methods:Sixty-nine patients with metastatic gastrointestinal stromal tumors were included in the study (11 KIT/PDGFRA wild-type, of whom 6 were succinate dehydrogenase deficient, 5 were non-succinate dehydrogenase deficient, and 58 were KIT/PDGFRA mutant). All six succinate dehydrogenase-deficient patients harbored SDHA mutations. Kaplan-Meier curves and log-rank tests were used to compare the survival of patients with succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors with that of KIT/PDGFRA wild-type patients without succinate dehydrogenase deficiency and patients with KIT/PDGFRA-mutant gastrointestinal stromal tumors.Results:Follow-up ranged from 8.5 to 200.7 months. The difference between succinate dehydrogenase subunit A-mutant gastrointestinal stromal tumors and KIT/PDGFRA-mutant or KIT/PDGFRA wild-type non-succinate dehydrogenase deficient gastrointestinal stromal tumors was significant considering different analyses (P = 0.007 and P = 0.033, respectively, from diagnosis of gastrointestinal stromal tumor for the whole study population; P = 0.005 and P = 0.018, respectively, from diagnosis of metastatic disease for the whole study population; P = 0.007 for only patients who were metastatic at diagnosis).Conclusion:Patients with metastatic KIT/PDGFRA wild-type succinate dehydrogenase-deficient gastrointestinal stromal tumors harboring succinate dehydrogenase subunit A mutations present an impressively long survival. These patients should be identified in clinical practice to better tailor treatments and follow-up over time

    Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST)

    Get PDF
    BACKGROUND: About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813-3825, 2004; Hematol Oncol Clin North Am 23:15-34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P).In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes. METHODS: We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis. RESULTS: We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG). CONCLUSION: We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors
    corecore