45 research outputs found

    Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states

    Get PDF
    Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial anisotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion

    Second-order topological superconductor via noncollinear magnetic texture

    Full text link
    We put forth a theoretical framework for engineering a two-dimensional (2D) second-order topological superconductor (SOTSC) by utilizing a heterostructure: incorporating noncollinear magnetic textures between an s-wave superconductor and a 2D quantum spin Hall insulator. It stabilizes the higher order topological superconducting phase, resulting in Majorana corner modes (MCMs) at four corners of a 2D domain. The calculated non-zero quadrupole moment characterizes the bulk topology. Subsequently, through a unitary transformation, an effective low-energy Hamiltonian reveals the effects of magnetic textures, resulting in an effective in-plane Zeeman field and spin-orbit coupling. This approach provides a qualitative depiction of the topological phase, substantiated by numerical validation within exact real-space model. Analytically calculated effective pairings in the bulk illuminate the microscopic behavior of the SOTSC. The comprehension of MCM emergence is aided by a low-energy edge theory, which is attributed to the interplay between effective pairings of (px + py )-type and (px + ipy )-type. Our extensive study paves the way for practically attaining the SOTSC phase by integrating noncollinear magnetic textures

    Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures to topological orbital ferromagnets

    Get PDF
    We address the importance of the modern theory of orbital magnetization for spintronics. Based on an all-electron first-principles approach, we demonstrate that the predictive power of the routinely employed "atom-centered" approximation is limited to materials like elemental bulk ferromagnets, while the application of the modern theory of orbital magnetization is crucial in chemically or structurally inhomogeneous systems such as magnetic thin films, and materials exhibiting non-trivial topology in reciprocal and real space,~e.g.,~Chern insulators or non-collinear systems. We find that the modern theory is particularly crucial for describing magnetism in a class of materials that we suggest here - topological orbital ferromagnets.Comment: 5 pages, 4 figure

    Interlayer Exchange Coupling: A General Scheme Turning Chiral Magnets into Magnetic Multilayers Carrying Atomic-Scale Skyrmions

    Get PDF
    We report on a general principle using interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic Skyrmions can appear at a zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on a W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of ab initio calculations for the Mn/Wm/Con/Pt/W(001) multilayer system we show that for certain thicknesses m of the W spacer and n of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for Skyrmion formation

    K(2)O(2): The most stable oxide of K

    No full text
    We have analyzed the stability of various oxides of K and find that K(2)O(2) is the most stable one. The additional stability is traced to the presence of oxygen dimers in K(2)O(2) which interact to form molecular orbitals. Other oxides such as KO(2) and KO(3) which also have dimers/trimers of oxygens are found to be less stable. This is traced to the shorter O-O bonds that one finds in them which gives rise to a significant coulomb repulsion between the electrons on the oxygen atoms making up the dimer/trimer, making them less stable

    K<sub>2</sub>O<sub>2</sub>: the most stable oxide of K

    No full text
    We have analyzed the stability of various oxides of K and find that K<sub>2</sub>O<sub>2</sub> is the most stable one. The additional stability is traced to the presence of oxygen dimers in K<sub>2</sub>O<sub>2</sub> which interact to form molecular orbitals. Other oxides such as KO<sub>2</sub> and KO<sub>3</sub> which also have dimers/trimers of oxygens are found to be less stable. This is traced to the shorter O–O bonds that one finds in them which gives rise to a significant coulomb repulsion between the electrons on the oxygen atoms making up the dimer/trimer, making them less stable
    corecore