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Role of Berry phase theory for describing orbital magnetism: From magnetic heterostructures
to topological orbital ferromagnets
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We address the importance of the modern theory of orbital magnetization for spintronics. Based on an
all-electron first-principles approach, we demonstrate that the predictive power of the routinely employed “atom-
centered” approximation is limited to materials like elemental bulk ferromagnets, while the application of the
modern theory of orbital magnetization is crucial in chemically or structurally inhomogeneous systems such as
magnetic thin films, and materials exhibiting nontrivial topology in reciprocal and real space, e.g., Chern insulators
or noncollinear systems. We find that the modern theory is particularly crucial for describing magnetism in a
class of materials that we suggest here—topological orbital ferromagnets.

DOI: 10.1103/PhysRevB.94.121114

Magnetism is an elementary property of materials, and it is
composed of spin and orbital contributions. In contrast to the
concept of spin magnetization, which has been relatively well
understood and extensively researched in the course of the past
decades, our understanding of orbital magnetism in solids has
been poor so far, and an ability to describe it reliably has been
missing until recently. Both spin and orbital magnetization
(OM) are accessible separately, e.g., by means of magnetome-
chanical [1] or magnetic circular dichroism measurements
[2–4], but the orbital contribution to the magnetization of
solids is usually overshadowed by the spin counterpart, owing
to the orbital moment quenching. However, in certain systems
the OM yields an equally important contribution, which can
even result in a spin-orbital compensation of magnetiza-
tion [5–7]. Its influence on spin-dependent transport [8–11],
magnetic susceptibility [11], orbital magnetoelectric response
[12–14], magnetic anisotropy [15], and Dzyaloshinskii-
Moriya interaction [16] renders the OM crucial for under-
standing basic properties of magnets. A spontaneous OM
in ferromagnets is a key manifestation of the spin-orbit
interaction (SOI), lifting in part the quenching mechanism.
This interpretation applies to most materials but it fails to
explain orbital magnetism in systems where a finite topological
OM emerges even without SOI as a result of a nontrivial
real-space distribution of spins [17].

Addressing the OM in solids is a subtle point as the position
operator r is ill-defined in the basis of extended Bloch states.
To circumvent this problem in ab initio calculations, the
evaluation of the angular momentum operator L is typically
restricted locally in space to atom-centered spheres. This
atom-centered approximation (ACA) is widely used to study
orbital magnetism in solids even nowadays. Rather recently,
a rigorous theory of OM was established through three
independent approaches [18–21]. In this so-called modern
theory [22–24] the OM is expressed as a genuine bulk property
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evaluated from the ground-state wave functions:

m = e

2�
Im

∫
[dk] 〈∂kukn| × (Hk + Ekn − 2EF )|∂kukn〉,

(1)

where k is the crystal momentum, [dk] stands for∑occ
n dk/(2π )3, |ukn〉 is an eigenstate of the lattice-periodic

Hamiltonian Hk = e−ik·rHeik·r to the band energy Ekn, EF

is the Fermi energy, and e > 0 is the elementary positive
charge. At zero temperature, the summation is restricted to
all occupied bands n below the Fermi energy. In contrast to
the ACA, Eq. (1) naturally and unambiguously accounts for
nonlocal contributions to the OM [25].

How important is the modern framework for accessing
the orbital magnetism in systems which are of great in-
terest in today’s spintronics, e.g., metallic magnetic thin
films [26], topologically nontrivial materials such as Chern
insulators [27], or magnetically complex systems such as
frustrated spin lattices and skyrmions [28,29]? Although the
modern theory of OM has already been implemented in
several first-principles electronic-structure codes based on
pseudopotentials, its comparison to the widely used and com-
putationally cheap ACA applied in all-electron methods has
been performed only for bulk Fe, Co, Ni, and several perovskite
transition-metal oxides [25,30,31]. And while in the latter case
the modern theory does not significantly alter the values of the
OM, the ACA was found to underestimate the OM in bcc Fe
by up to 50%. However, the relatively modest magnitude of
the OM in elemental Fe leaves open the question of relevance
of the modern theory in wide classes of materials explored
today. In particular, until now, a strong justification for the
computationally very challenging modern-theory description
by all-electron approaches is missing, leading to significant
doubts on the wider relevance of the modern theory of OM in
magnetic systems.

Here, based on first-principles calculations we evaluate
the importance of the modern theory of OM in elemental
bulk ferromagnets, magnetic thin films, Chern insulators,
and systems with noncollinear magnetism. We do this by
contrasting the ACA with the modern theory of OM in these
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systems, Eq. (1). We demonstrate that using the modern theory
is essential for complex magnetic materials, and while ACA
performs well in elemental bulk ferromagnets, it breaks down
completely in a chemically and structurally heterogeneous
system of a Mn monolayer deposited on W(001). Furthermore,
the correct description of the OM in the Chern insulating
phase, modeled here by a system of graphene decorated by 5d

transition-metal adatoms, requires the modern theory. Finally,
we demonstrate the crucial role that the modern theory plays
for correctly describing the magnetism in the class of materials
the discovery of which we display in this work—topological
orbital ferromagnets. In these materials, exemplified here by
the 3Q state of Mn/Cu(111), the macroscopic spin mag-
netization is completely replaced by its orbital counterpart,
prominent even without spin-orbit interaction.

Within a common ansatz, the orbital moment in the unit cell
(uc) muc

kn = − e
2me

〈ψkn|L|ψkn〉 associated with a state |ψkn〉 is
obtained by integrating the angular momentum operator over
the unit cell. Here, me is the electron mass. In all-electron
methods the space is often partitioned into muffin-tin spheres
centered around the atoms and the interstitial region between
the atoms. Typically, the evaluation of the orbital moment is
given by the ACA, mμ

kn = − e
2me

〈ψkn|Lμ|ψkn〉MT, i.e., only by
the contribution of the muffin-tin (MT) sphere of atom μ. Here,
Lμ = rμ × p where rμ is the position operator with respect
to the center of atom μ and p is the momentum operator.
The OM in ACA is computed by summing up the individual
contributions over all occupied states and atoms in the unit
cell, and dividing by the unit-cell volume �:

m = 1

Nk�

∑
k

occ∑
n

∑
μ

mμ

kn, (2)

where Nk is the number of k points. In this work, Eq. (2)
is contrasted with its modern-theory counterpart, Eq. (1).
To converge efficiently the k summation in the expressions
for m in Eqs. (1) and (2), we employ the Wannier in-
terpolation technique [31–33], realized within the accurate
all-electron full-potential linearized augmented plane-wave
(FLAPW) code FLEUR [34]. Using this code, we perform
self-consistent density functional theory calculations including
SOI in second variation and using the PBE functional, unless
stated otherwise [33,35–39].

Bulk ferromagnets. We begin by considering the bulk
ferromagnets bcc Fe, hcp Co, and fcc Ni. The magnetization
direction is aligned along the experimental easy axis, which
is (001) for Fe, (0001) for Co, and (111) for Ni. In Fig. 1
we present the OM as a function of the Fermi energy EF

with respect to the true Fermi energy E0
F , �EF = EF − E0

F .
At �EF = 0, we obtain in ACA the values 0.0451μB/Fe,
0.0767μB/Co, 0.0499μB/Ni, and 0.0693, 0.0727, 0.0460 in
the modern theory. The latter results agree well with previous
pseudopotential calculations (0.0761, 0.0838, 0.0467) [31].
Clearly, the agreement between the modern theory and ACA
is good for Ni and Co over the whole range of energies.
However, in the case of Fe the modern theory corrects the
OM by more than 50% around the Fermi level, which could
be attributed to a larger degree of delocalization of the Bloch
states in this material as compared to Co and Ni. Compared
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FIG. 1. Easy-axis orbital magnetization (OM) in the bulk fer-
romagnets fcc Ni, hcp Co, and bcc Fe, according to atom-centered
approximation (ACA) and modern theory (per atom). The Fermi level
is varied by �EF with respect to the true Fermi energy.

to experiment (0.081, 0.133, 0.053) [1], the modern theory
particularly improves the OM value in Fe.

Heterogeneous systems. In heterogeneous materials like
thin magnetic films, the local moments contributing to the
OM in ACA can vary strongly in real space, and compensate
each other. Therefore, nonlocal effects are expected to play
a significant role for the OM in these systems. To prove
this point, as an example, we consider an asymmetric slab
of a Mn monolayer deposited on nine atomic layers of
bcc W, Mn/W(001). The structural parameters taken from
Ref. [40] were adopted for the magnetic interface. Although
Mn/W(001) exhibits in reality a long-wavelength spin-spiral
ground state [41], the collinear ferromagnetic case is studied
here.

Our first-principles results, presented in Fig. 2, reveal a
drastic difference between the modern theory and ACA for
the out-of-plane OM (mz). Not only does the modern theory
alter the magnitude of the OM, but even its sign is different
from that obtained in ACA over wide regions of energy. The
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FIG. 2. Orbital magnetization mz in Mn/W(001) according to
ACA and modern theory (per two-dimensional unit cell, uc).
Additionally, the local orbital moments in ACA of Mn and the first
W (W1) layer are shown.
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ACA moment is dominated by the local atomic moments in
the first two layers, i.e., the Mn overlayer and the first layer
of W atoms (W1). These moments compensate partly leading
to an underestimation of orbital magnetism. Noticeably, the
effect is pronounced near the Fermi level where the OM is
drastically reduced by an order of magnitude as compared to
its modern-theory value. Since magnetism originates primarily
in Mn, while only W exhibits strong SOI, nonlocal effects
become important in this material. As a consequence, the
ACA performs particularly poorly with respect to the modern
theory. The manifestly nontrivial, rapidly oscillating behavior
of the modern theory OM with energy, typical for properties
driven by the Berry curvature in reciprocal space, manifests
the complexity of the orbital magnetism in magnetic thin films,
and calls for revisiting our understanding of orbital physics at
surfaces.

Chern insulators. Here we test the importance of the
modern theory for OM in realistic systems which exhibit
topologically nontrivial gaps in their spectrum. Previous
work has shown that 5d transition-metal adatoms deposited
on graphene support strong magnetoelectric response and
Chern insulator band gaps due to SOI [42]. As an example,
we consider the system of ferromagnetically coupled W
adatoms with a spin moment of 1.6μB deposited on graphene
in a 4 × 4 geometry. W is placed at the hollow sites of
free-standing graphene, with the magnetization out-of-plane
(along the z axis).1 Upon considering SOI, as a consequence
of complex hybridization between the d states of W and
graphene p states, a global band gap opens directly at the
Fermi level and approximately 0.27 eV below it. Due to the
topologically nontrivial nature of these gaps, the Chern number
C1 = 1

2π

∫
�xydk takes the quantized values of +2 and −2,

respectively, and the anomalous Hall conductivity (AHC) is
σxy = − e2

h
C1. Here, �xy = −2Im

∑occ
n 〈∂kx

ukn|∂ky
ukn〉 is the

only nonvanishing (in two dimensions) component of the Berry
curvature tensor of all occupied states below the respective gap.
It follows from Eq. (1) that dmz

dEF
= e

h
C1 in the Chern insulator

phase [22].
In Fig. 3 the performance of the modern theory with respect

to ACA is presented. By inspecting the shaded regions of the
topologically nontrivial gaps in this figure, we observe that the
modern theory OM is perfectly linear in �EF as expected, and
even changes its sign around the Fermi level [cf. Fig. 3(b)]. This
is in sharp contrast to the ACA, which predicts a constant value
of OM within the gaps. Replacing W with other 5d transition
metals, for example Ir, we observe the same breakdown of the
ACA in the vicinity of the Chern insulator gaps in the spectrum;
see, e.g., Fig. 3(c). Despite the fact that both pronounced spin
magnetism and strong SOI originate from the same atomic
species (W), the overall agreement of modern theory with
ACA is very poor not only directly within the Chern insulator
gaps, but also in a wider region around them, Fig. 3(a). This
can be understood from the observation of strong interaction
between graphene and W states, which at the end leads to the
formation of topologically nontrivial gaps. Finally, we remark

1The atomic coordinates and computational parameters from
Ref. [42] were used.
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FIG. 3. (a) Orbital magnetization mz according to modern theory
and atom-centered approximation (ACA) for the W-graphene hybrid
system. The shaded regions highlight nontrivial Chern insulator gaps.
(b) Zoom to the region near the Fermi level. (c) Orbital magnetization
for Ir deposited in 2 × 2 geometry on graphene. A nontrivial band
gap with the Chern number +2 opens about 2.65 eV below the Fermi
level.

that the energy dependence of the OM and the AHC are not
overall correlated in this system.

Topological orbital ferromagnets. The competing exchange
interactions between itinerant spins on the two-dimensional
triangular lattice can realize noncollinear magnetic struc-
tures. A prime example is the superposition of three spiral
spin-density waves (SSDWs) with finite wave vectors Q(i),
i = 1,2,3. This so-called 3Q state (cf. Fig. 4) exhibits no net
spin magnetization and it is the ground-state spin structure of
a Mn monolayer deposited on Cu(111), Mn/Cu(111) [43], for
which we study the orbital magnetism here.

In contrast to typical interfacial systems, which of-
ten exhibit chiral magnetic states due to SOI-mediated
Dzyaloshinskii-Moriya interaction [16,44], the 3Q state of
Mn/Cu(111) is a result of competing isotropic higher-order
exchange interactions, and it is practically not altered upon
considering SOI. The total spin magnetization in the unit cell
is zero. Assuming locally a collinear alignment of orbital and
spin moment in the presence of SOI, also the total OM is
expected to be zero. We show below, however, that this is not
the case. Since the electronic structure of Cu around the Fermi
level is dominated by s electrons and the 3d-3d hybridization
between the overlayer and the substrate is small, we modeled
the system as an unsupported Mn(111) monolayer at the lattice
constant of Cu(111). In Fig. 4 we present our results for the
out-of-plane (z) component of the OM which is the only
nonvanishing one. Strikingly, we observe that the OM does
not follow the direction of the spin moment, but is determined
by the symmetry of the film, and that the ACA serves as a very
crude approximation to the OM, resulting in large differences
when compared to the modern-theory values. In particular near
the Fermi level, a large underestimation of the OM by the ACA
is apparent, with the ACA giving rise to an OM at the Fermi
energy which is four times smaller than the modern-theory
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FIG. 4. Top: (a) Orbital magnetization mz and (b) anomalous Hall
conductivity σxy of the unsupported Mn monolayer in 3Q state, with
and without SOI. The dash-dotted line refers to ACA values of the
OM. Bottom: Three-dimensional 3Q state of the unsupported Mn
monolayer.

value. We also observe that the energy dependence of the OM
is correlated much stronger with that of the AHC, Fig. 4, as
opposed to the cases discussed above.

The SOI is well known to be important for OM and AHC.
Strikingly, we find that both properties do not rely on the
presence of SOI but stem manifestly from the noncollinear
spin texture of the 3Q state. However, as opposed to the case
of the spin lattice of Fe/Ir(001) [17] for which a contribution
to the OM without SOI has been also observed, in Mn/Cu(111)
the presence of SOI makes no noticeable effect on OM
and AHC. The AHE in this case can be seen as a purely
topological Hall effect [17,45,46]. Remarkably, the large
overall magnetization of about −1.5μB per unit cell of
Mn/Cu(111) at the true Fermi energy is entirely due to orbital
magnetism. The system of Mn/Cu(111) is thus a representative
of a class of materials which we refer to as topological
orbital ferromagnets (TOFs), i.e., ferromagnets for which the
macroscopic magnetization is solely dominated by the OM,
with the latter originating from the nontrivial topology of spin
distribution in real space, rather than SOI.

The origin of the latter topological OM (TOM) can
be attributed to the presence of an “emergent” magnetic
field, which roots in the noncoplanarity of the neighboring
spins [47], and which plays also a crucial role in the physics
of skyrmions [45,48–52]. The emergent field couples to the
orbital degrees of freedom and is identified as an alternative
mechanism lifting the orbital degeneracy [17]. As TOM
is a consequence of the complex noncollinear structure of
the delocalized Bloch wave functions in real space, the
importance of the nonlocal contributions in this case calls for
a proper modern-theory description of orbital magnetism in
noncollinear structures such as multi-Q states and skyrmions.

The emergence of a ferromagnetic ordering of large TOM
as we predict in these zero-spin-magnetization magnets opens
a path to intriguing physics as orbital moments couple to
external magnetic fields, optical perturbations, and orbital
currents. For example, it is known that the chiral correlation
between the spins on a lattice can display high stability with
respect to fluctuations (see, e.g., [53]), and we speculate
that the long-range ferromagnetism of TOFs can survive the
ordering temperature of the spin state. In addition, effective
spin Hamiltonians used to describe the phase diagrams of
TOFs in an external magnetic field require an amendment
by the orbital Zeeman energy. The latter interaction of TOM
with external magnetic fields can be also utilized to control
the chirality of the spin texture owing to the close correlation
between the spin structure and TOM: indeed, interchanging
the green and blue atoms in Fig. 4 reverses the sign of the
emergent field and the orbital moment, but does not change
the energy of the 3Q state.

To summarize, we explored the relevance of the modern
theory for OM in a set of representatives of diverse classes
of materials, currently under scrutiny in spintronics. Our
main message is that outside of the realm of elemental bulk
ferromagnets, employing the modern theory description is
crucial for understanding orbital magnetism in noncollinear,
topologically nontrivial, as well as structurally and chemically
heterogeneous systems.
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B 72, 024452 (2005).
[41] P. Ferriani, K. von Bergmann, E. Y. Vedmedenko, S. Heinze, M.

Bode, M. Heide, G. Bihlmayer, S. Blügel, and R. Wiesendanger,
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