56 research outputs found

    Application of knowledge-driven method for debris-slide susceptibility mapping in regional scale

    Get PDF
    Debris-slides are a frequent hazard in fragile decomposed metasedimentary rocks in the Anakeesta rock formation in Great Smoky Mountain National Park. The spatial distribution of an existing debris-slide area could be used to prepare susceptibility map for future debris-slide initiation zones. This work aims to create a debris-slide susceptibility map by using a knowledge-driven method in a GIS platform in Anakeesta formation of Great Smoky Mountain National Park. Six geofactors, namely, elevation, annual rainfall, slope curvature, landcover, soil texture and various slope failure modes were used to create the susceptibility map. Debris- slide locations were mapped from the satellite imagery, previous studies, and field visits. A Weighted Overlay Analysis was performed in order to generate the final susceptibility map, where individual classes of geofactors were ranked and were assigned weights based on their influence on debris-slide. The final susceptibility map was classified into five categories: very low, low, moderate, high and very high susceptible zones. Validation of the result shows very high category predicted ~10%, high and moderate categories predicted 75.5% and ~14.5% of the existing debris-slide pixels respectively. This study successfully depicts the advantage and usefulness of the knowledge-driven method, which can save considerable amount of time and reduce complicated data analysis unlike statistical or physical based methods. However, the accuracy of the model highly depends on the researcher’s experience of the area and selection of respective geofactors

    Freeze-Thaw Induced Gully Erosion: A Long-Term High-Resolution Analysis

    Get PDF
    Gullies are significant contributors of sediment to streams in the southeastern USA. This study investigated gully erosion in the clay-rich soils of east Tennessee under a humid subtropical climate. The aims of this study were to (1) estimate long-term erosion rates for different gully geomorphic settings, (2) compare patterns of erosion for the different settings, and (3) model the response of gully erosion to freeze-thaw events. Erosion was measured weekly from June 2012 to August 2018 using 105 erosion pins distributed in gully channels, interfluves, and sidewalls. Erosion rates were estimated from average slopes of lines of best fit of pin lengths versus time. Maximum and minimum temperature was calculated daily using an on-site weather station and freeze-thaw events were identified. Gully erosion was modeled using antecedent freeze-thaw activity for the three geomorphic settings. Long-term erosion rates in channels, interfluves, and sidewalls were 2.5 mm/year, 20 mm/year, and 21 mm/year, respectively; however, week-by-week erosion was statistically different between the three settings, indicating different erosive drivers. Models of erosion with lagged freeze-thaw variables explained up to 34.8% of the variability in erosion variables; sidewall erosion was most highly related to freeze-thaw activity. Freeze-thaw in prior weeks was an important variable in all erosion models

    Seasonal Precipitation Variability and Gully Erosion in Southeastern USA

    Get PDF
    This study examines the relationship between gully erosion in channels, sidewalls, and interfluves, and precipitation parameters (duration, total accumulation, average intensity, and maximum intensity) annually and seasonally to determine seasonal drivers for precipitation-related erosion. Ordinary Least Square regression models of erosion using precipitation and antecedent precipitation at weekly lags of up to twelve weeks were developed for three erosion variables for each of three geomorphic areas: channels, interfluves, and sidewalls (nine models in total). Erosion was most pronounced in winter months, followed by spring, indicating the influence of high-intensity precipitation from frontal systems and repeated freeze-thaw cycles in winter; erosion in summer was driven by high-intensity precipitation from convectional storms. Annually, duration was the most important driver for erosion, however, during winter and summer months, precipitation intensity was dominant. Seasonal models retained average and maximum precipitation as drivers for erosion in winter months (dominated by frontal systems), and retained maximum precipitation intensity as a driver for erosion in summer months (dominated by convectional storms). In channels, precipitation duration was the dominant driver for erosion due to runoff-related erosion, while in sidewalls and interfluves intensity parameters were equally important as duration, likely related to rain splash erosion. These results show that the character of precipitation, which varies seasonally, is an important driver for gully erosion and that studies of precipitation-driven erosion should consider partitioning data by season to identify these drivers

    Comparison of Geometric and Volumetric Methods to a 3D Solid Model for Measurement of Gully Erosion and Sediment Yield

    Get PDF
    Gully erosion is a global problem that degrades land and reduces its utility for agriculture, development, and water quality. Quantification of sediment yield and control of sediment sources is essential for environmental protection. Five methods to evaluate erosion rates and sediment yield on an east Tennessee, USA, hillslope were compared: (1) physical measurement by removal of accumulated sediment using 10 L buckets; (2) repeated measurement of erosion pins in gully (erosional) and delta (depositional) areas; (3) geometric model using a combination trapezoidal prism-cylinder segment; (4) geometric model using a series of trapezoidal pyramids; and (5) 3D solid computer modeling. The 3D solid model created in SolidWorks was selected as the reference model and all other methods overestimated sediment yield to varying degrees. Erosion pin methods overestimated sediment yield by 368% in deltas and 123% in gullies. Volumetric measurement of sediment using buckets overestimated sediment yield by 160% due to void space in the buckets. The trapezoidal prism-cylinder segment model overestimated sediment yield by 66% and the trapezoidal pyramids method overestimated sediment yield by 5.7%. For estimation of sediment trapped behind an elliptical or circular silt fence dam, use of the trapezoidal pyramid method provides a good approximation comparable to 3D solid computer modeling

    Slope Stability Risk Assessment in Urban Development, Eastern Tennessee Hillslope

    Get PDF
    Landslides are a massive problem within the Appalachians causing large amounts of damage, and even loss of life. Urban development on the hill slope further destabilizes slope and accelerates failure. The objective of this project is to examine the slope stability condition at an urban community in eastern Tennessee and assess the relative risk in the area. The first step included a digital survey of the area by collecting all available soil, geology, elevation, watershed, slope, drainage condition, stream, and building footprint data. This data was collected from a multitude of sources including but not limited to the United States Geological Survey (USGS), Environmental Systems Research Institute (ESRI) and Tennessee State Government resources. After this a process of field verification was required to confirm the validity of acquired digital data. This field verification process included four separate trips that aimed to access the extent of damage, slope condition, bedrock geology, and soil information. The data collected from the previous digital survey and field verification trips were used to prepare a landslide hazard prediction map using Weighted Overlay method in ArcGIS Pro software. To validate the accuracy of the hazard map, an unmanned aircraft system (UAS) drone survey will be completed in April 2023. A final Slope Stability Hazard Map will be produced for the urban community and the report will be shared with the community members. The result indicated that both the soil and geology reports were spatially inaccurate as the entirety of urban development was constructed on Sevier Shale Formation, whereas Knox Formation appears on the map. The slope and hill shade information were correct including the identification of a road that was uncompleted that undercut a steep slope. After our first survey the maps were combined and weighted in a “Weighted Overlay map” with slope, curvature, and stream data to make a map that showed likely areas of risk. The study area contains multiple areas with high slope instability risk. These areas are steep slopes as high as 51° and weathered shale with a lack of vegetation that has been undercut by a roadway that was unfinished. Other areas of high concern with clear evidence of slope sliding are present with the movement of supportive foundation beams. Signs of cracking and sliding have been spotted within the road leading to some of the housing complexes. This information will then be compared to a UAS drone survey to create a final Slope Stability Hazard Map. The urban community can plant vegetation, divert storm water, keep the slope dry, and reduce overburden pressure on the slopes to reduce further movement. Costly engineering structures like slope anchors, soil nails, and retaining walls are possible solutions and could help to support the steep and overburdened slopes

    Analyzing landslide hotspots and susceptibility in East Tennessee transportation corridors

    Get PDF
    Landslides in the Southern Appalachian Mountains of East Tennessee often activate and reactivate. Often triggered by high-intensity or prolonged rainfall, landslides are responsible for infrastructure damage, closure of transportation routes, and even fatality. The study area is defined by the New River Watershed which has high elevation and steep slopes cutting through State Route 116. The route has hairpin turns and has experienced damage from past landslide events. The geology here is mostly shale and sandstones with coal bedding throughout. Much of the soil consists of a fine-loamy texture. Most drainage occurs from the New River, fed by runoff from slopes into roadways. This area experiences heavy rainfall with a yearly average of 70 inches. Landcover consists of a mostly forested landscape with shrubs and grassland. In response to previous landslides, the Tennessee Department of Transportation (TDOT) recently repaired six areas within the route intercepted by recent landslides. Aside from the landslides near TDOT’s corridors, approximately 50 additional landslides have been found using Google Earth and LiDAR data. Landslide hotspots were identified using kernel density estimation and the nearest neighbor index. A heuristic landslide susceptibility model was prepared by weighing the ArcGIS layers: slope, soil particle, geology, curvature, elevation, distance from the stream, and land cover, in their contribution to the previous landslides. Results indicate that additional sites in Anderson and Morgan County should be studied further for potential landslide-related damage. The study will improve the proactive decisions of TDOT and justify timely monitoring, maintenance, and strategic protection of the route from slope hazards

    Using Spatial Regression to Model Potentially Toxic Metal (PTM) Mobility Based on Physicochemical Soil Properties

    Get PDF
    Mining processes generate waste rock, tailings, and slag that can increase potentially toxic metal (PTM) concentrations in soils. Un-reclaimed, abandoned mine sites are particularly prone to leaching these contaminants, which may accumulate and pose significant environmental and public health concerns. The characterization and spatial delineation of PTMs in soils is vital for risk assessment and soil reclamation. Bumpus Cove, a once active mining district of eastern Tennessee, is home to at least 47 abandoned, un-reclaimed mines, all permanently closed by the 1950s. This study evaluated soil physicochemical properties, determined the spatial extent of PTMs (Zn, Mn, Cu, Pb, and Cd), and examined the influence of soil properties on PTM distribution in Bumpus Cove, TN. Soil samples (n = 52) were collected from a 0.67 km2 study area containing 6 known abandoned Pb, Zn, and Mn mines at the headwaters of Bumpus Cove Creek. Samples were analyzed for Zn, Mn, Cu, Pb, and Cd by microwave-assisted acid digestion and flame atomic absorption spectrometry (FAAS) (12-1,354 mg/kg Zn, 6-2,574 mg/kg Mn, 1-65 mg/kg Cu, 33-2,271 mg/kg Pb, and 7-40 mg/kg Cd). Of the measured PTMs, only Pb exceeds permissible limits in soils. In addition to the PTM analyses, soil physical (texture, moisture content, and bulk density) and chemical (pH, cation exchange capacity (CEC), and total organic carbon (TOC)) properties were evaluated. Spatially weighted multivariate regression models developed for all PTMs using soil physicochemical properties produced improved results over ordinary least squares (OLS) regression models. Models for Zn (R2 = 0.71) and Pb (R2 = 0.69) retained covariates epH, moisture content, and CEC (Zn), and pH and CEC (Pb). This study will help define PTM concentration and transport and provide a reference for state and local entities responsible for contaminant monitoring in Bumpus Cove, TN

    Preliminary site assessment for ground monitoring of a complex landslide along I-40 in Roane County, Tennessee

    Get PDF
    In-ground slope monitoring is an essential part of landslide early warning systems. Precise movement data from borehole monitors can detect emerging hazards near critical infrastructure. Typically, monitoring is done with inclinometers, but lower-cost alternatives have emerged which have yet to be tested in Tennessee. Time domain reflectometry (TDR) records magnitudes and depths of movements along a buried coaxial cable. When paired with a remote data logger, TDR can wirelessly transmit high resolution movement data in real time, making it promising for landslide early warning systems. Tennessee Department of Transportation (TDOT) has proposed a one-year feasibility study to test TDR for use in unstable soil slopes near highways. The study area is a well-known landslide site along Interstate 40 in Roane County, TN. Careful siting of borehole instrumentation is crucial for accurate monitoring. The goal of this study is to optimize TDR installation, with three specific aims: (i) evaluate landslide morphology, (ii) pinpoint locations and depths with greatest movement, and (iii) assess spatiotemporal patterns across the site. Statistical analysis of prior data from 13 inclinometers showed ongoing slope movement over the 21-acre complex landslide. Spatial interpolation suggested an asymmetrical failure surface with both shallow and deep motion. Space-time cube analysis indicated varying movement rates and timing across the site, suggesting separate landslide bodies. Based on these results, three optimal borehole depths and locations were proposed for TDR instruments. This analysis will ensure accuracy in tests of TDR for early warning system feasibility in Tennessee

    Surface-Soil Properties of Alder Balds with Respect to Grassy and Rhododendron Balds on Roan Mountain, North Carolina—Tennessee

    Get PDF
    We analyzed soils in Alder Bald, Grassy Bald, and Rhododendron Bald communities on Roan Mountain to infer the influence of vegetation on soil and to help guide management strategies. In all vegetation types, soils were acid (pH = 4–5) sandy loams. We found vegetation-associated differences for organic content, cation exchange capacity, acidity, two plant macronutrients (K, Mg), and three cations (Fe, Na, Zn). We predicted that nitrogen compounds would be highest in the Alder Bald because Alnus viridis ssp. crispa (Green Alder) can harbor nitrogen-fixing bacteria. Organic content was highest at the alder-bald sites, ammonium was similar among vegetation types, and nitrate was high at only some sample sites. The unique soil properties of the Alder Bald community, its likely role in primary succession, and its documentation as a long-standing community type on Roan Mountain suggest that management should be directed towards its conservation
    • …
    corecore