17 research outputs found

    Systematic assessment of long-read RNA-seq methods for transcript identification and quantification

    Get PDF
    The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis

    Transcription Independent Insulation at TFIIIC-Dependent Insulators

    No full text
    Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the absence of RNA polymerase III or polymerase II but requires specific histone acetylases and chromatin remodelers. This analysis identifies a minimal set of factors required for insulation

    Measuring the buffering capacity of gene silencing in Saccharomyces cerevisiae

    No full text
    Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. Transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux, giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown, and we developed methods to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state as well as to measure the levels of the enzymes and structural proteins necessary for silencing. We show that loss of silencing required 50 to 75% acetyl-mimic histones, though the precise levels were influenced by silencer strength and upstream activating sequence (UAS) enhancer/promoter strength. Measurements of repressor protein levels necessary for silencing showed that reducing SIR4 gene dosage two- to threefold significantly weakened silencing, though reducing the gene copy numbers for Sir2 or Sir3 to the same extent did not significantly affect silencing suggesting that Sir4 was a limiting component in gene silencing. Calculations suggest that a mere twofold reduction in the ability of acetyltransferases to acetylate nucleosomes across a large array of nucleosomes may be sufficient to generate a transcriptionally silent domain

    Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities

    No full text
    The absolute requirement for the histone deacetylase activity of Sir2p in silencing coupled with the conservation of Sir2p-like proteins in larger eukaryotes suggests that this molecule plays an important role in gene regulation in all organisms. Here we report the purification and characterization of two Sir2p-containing protein complexes; one of which contains Sir4p and the other Net1p. The Sir4p-containing complex has an NAD-dependent histone deacetylase activity, while the Net1p-containing complex possesses deacetylase activity but only weak NAD-dependent histone deacetylase activity. Finally, we demonstrate that the Sir2p-containing complexes bind nucleosomes efficiently and partially restrict accessibility of the linker DNA to enzymatic probes

    H2A.Z Functions To Regulate Progression through the Cell Cycle

    No full text
    Histone H2A variants are highly conserved proteins found ubiquitously in nature and thought to perform specialized functions in the cell. Studies in yeast on the histone H2A variant H2A.Z have shown a role for this protein in transcription as well as chromosome segregation. Our studies have focused on understanding the role of H2A.Z during cell cycle progression. We found that htz1Δ cells were delayed in DNA replication and progression through the cell cycle. Furthermore, cells lacking H2A.Z required the S-phase checkpoint pathway for survival. We also found that H2A.Z localized to the promoters of cyclin genes, and cells lacking H2A.Z were delayed in the induction of these cyclin genes. Several different models are proposed to explain these observations

    Heterochromatin formation via recruitment of DNA repair proteins.

    No full text
    Heterochromatin formation and nuclear organization are important in gene regulation and genome fidelity. Proteins involved in gene silencing localize to sites of damage and some DNA repair proteins localize to heterochromatin, but the biological importance of these correlations remains unclear. In this study, we examined the role of double-strand-break repair proteins in gene silencing and nuclear organization. We find that the ATM kinase Tel1 and the proteins Mre11 and Esc2 can silence a reporter gene dependent on the Sir, as well as on other repair proteins. Furthermore, these proteins aid in the localization of silenced domains to specific compartments in the nucleus. We identify two distinct mechanisms for repair protein-mediated silencing-via direct and indirect interactions with Sir proteins, as well as by tethering loci to the nuclear periphery. This study reveals previously unknown interactions between repair proteins and silencing proteins and suggests insights into the mechanism underlying genome integrity
    corecore