32 research outputs found

    Towards an interpretation of MOND as a modification of inertia

    Full text link
    We explore the possibility that Milgrom's Modified Newtonian Dynamics (MOND) is a manifestation of the modification of inertia at small accelerations. Consistent with the Tully-Fisher relation, dynamics in the small acceleration domain may originate from a quartic (cubic) velocity-dependence of energy (momentum) whereas gravitational potentials remain linear with respect to mass. The natural framework for this interpretation is Finsler geometry. The simplest static isotropic Finsler metric of a gravitating mass that incorporates the Tully-Fisher relation at small acceleration is associated with a spacetime interval that is either a homogeneous quartic root of polynomials of local displacements or a simple root of a rational fraction thereof. We determine the low energy gravitational equation and find that Finsler spacetimes that produce a Tully-Fisher relation require that the gravitational potential be modified. For an isolated mass, Newton's potential Mr1Mr^{-1} is replaced by Ma0log(r/r0)Ma_0\log (r/r_0) where a0a_0 is MOND's acceleration scale and r0r_0 is a yet undetermined distance scale. Orbital energy is linear with respect to mass but angular momentum is proportional to M3/4 M^{3/4}. Asymptotic light deflection resulting from time curvature is similar to that of a singular isothermal sphere implying that space curvature must be the main source of deflection in static Finsler spacetimes possibly through the presence of the distance scale r0r_0 that appears in the asymptotic form of the gravitational potential. The quartic nature of the Finsler metric hints at the existence of an underlying area-metric that describes the effective structure of spacetime.Comment: Revised version, 9 pages, 1 figure. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Origin theories for the eccentricities of extrasolar planets

    Get PDF
    Half the known extrasolar planets have orbital eccentricities in excess of 0.3. Such large eccentricities are surprising as it is thought that planets form in a protoplanetary disk on nearly circular orbits much like the current states of the solar system planets. Possible explanations for the large planetary eccentricities include the perturbations that accompany planet-planet scattering, the tidal interaction between the gas disk and the planets, Kozai's secular eccentricity cycles, the eccentricity excitation during planetary pair migration in mean motion resonance, the perturbations by stellar encounters, stellar-like relaxation that occurs if planets formed through gravitational instability, and the relative acceleration by the stellar jet system of the host star with respect to the companion. In this chapter, we comment on the relevance and characteristics of the various eccentricity origin theories.Comment: 23 pages, 8 figures. Review lecture at the 2006 Aussois Winter School "Open Problems in Celestial Mechanics". To appear in Lecture Notes in Physics, Springe

    On dynamical friction in a gaseous medium with a boundary

    Full text link
    Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. We study the effects of the presence of a boundary on dynamical friction by studying analytically the interaction of perturber with uniform rectilinear motion in a uniform homogeneous medium with a reflecting planar boundary. Wake reflection at a medium's boundary may occur at the edges of truncated disks perturbed by planetary or stellar companions as well as in numerical simulations of planet-disk interaction with no-outflow boundary conditions. In this paper, we show that the presence of the boundary modifies the behaviour of dynamical friction significantly. We find that perturbers are invariably pushed away from the boundary and reach a terminal subsonic velocity near Mach 0.37 regardless of initial velocity. Dynamical friction may even be reversed for Mach numbers less than 0.37 thereby accelerating instead of decelerating the perturber. Perturbers moving parallel to the boundary feel additional friction orthogonal to the direction of motion that is much stronger than the standard friction along the direction of motion. These results indicate that the common use of the standard Chandrasekhar formula as a short hand estimate of dynamical friction may be inadequate as observed in various numerical simulations.Comment: Revised version, 28 pages, 10 figures, Accepted for publication in Astrophysics & Space Scienc

    Coorbital capture at arbitrary inclination

    Full text link
    The process of capture in the coorbital region of a solar system planet is studied. Absolute capture likelihood in the 1:1 resonance is determined by randomly constructed statistical ensembles numbering 7.24×1057.24\times 10^5 of massless asteroids that are set to migrate radially from the outer to the inner boundaries of the coorbital region of a Jupiter-mass planet. Orbital states include coorbital capture, ejection, collisions with the Sun and the planet and free-crossing of the coorbital region. The relative efficiency of retrograde capture with respect to prograde capture is confirmed as an intrinsic property of the coorbital resonance. Half the asteroids cross the coorbital region regardless of eccentricity and for any inclination less than 120120^\circ. We also find that the recently discovered retrograde coorbital of Jupiter, asteroid 2015 BZ509, lies almost exactly at the capture efficiency peak associated with its orbital parameters.Comment: 8 pages. 2 figures. Submitted to Journal of Computational and Applied Mathematic

    The disturbing function for polar Centaurs and transneptunian objects

    Full text link
    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a pp:qq resonance do not depend on the value of the resonance order pq|p-q| but only on its parity. Thus all even resonance order eccentricity amplitudes are e2\propto e^2 and odd ones e\propto e to lowest order in eccentricity ee. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.Comment: 18 pages, 9 figures, 7 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Orbit injection of planet-crossing asteroids

    Full text link
    Solar system Centaurs originate in transneptunian space from where planet orbit crossing events inject their orbits inside the giant planets' domain. Here, we examine this injection process in the three-body problem by studying the orbital evolution of transneptunian asteroids located at Neptune's collision singularity as a function of the Tisserand invariant, T. Two injection modes are found, one for T>0.1, or equivalently prograde inclinations far from the planet, where unstable motion dominates injection, and another for T<= 0.1, or equivalently polar and retrograde inclinations far from the planet, where stable motion dominates injection. The injection modes are independent of the initial semi-major axis and the dynamical time at the collision singularity. The simulations uncovered a region in the polar corridor where the dynamical time exceeds the solar system's age suggesting the possibility of long-lived primordial polar transneptunian reservoirs that supply Centaurs to the giant planets' domain.Comment: 13 pages, 12 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The excitation of planetary orbits by stellar jet variability and polarity reversal

    Full text link
    Planets form in active protoplanetary disks that sustain stellar jets. Momentum loss from the jet system may excite the planets' orbital eccentricity and inclination (Namouni 2005, AJ 130, 280). Evaluating quantitatively the effects of such excitation requires a realistic modeling of the momentum loss profiles associated with stellar jets. In this work, we model linear momentum loss as a time-variable stochastic process that results in a zero mean stellar acceleration. Momentum loss may involve periodic or random polarity reversals. We characterize orbital excitation as a function of the variability timescale and identify a novel excitation resonance between a planet's orbital period and the jet's variability timescale where the former equals twice the latter. For constant variability timescales, resonance is efficient for both periodic and random polarity reversals, the latter being stronger than the former. For a time variable variability timescale, resonance crossing is a more efficient excitation mechanism when polarity reversals are periodic. Each polarity reversal type has distinct features that may help constrain the magnetic history of the star through the observation of its planetary companions. For instance, outward planet migration to large distances from parent stars is one of the natural outcomes of periodic polarity reversal excitation if resonance crossing is sufficiently slow. Applying the excitation mechanism to the solar system, we find that the planet-jet variability resonance with periodic polarity reversal momentum loss is a possible origin for the hitherto unexplained inclination of Jupiter's orbit by 6 deg. with respect to the Sun's equator.Comment: 16 pages, 10 figures. published in Astrophysics & Space Scienc

    A numerical investigation of coorbital stability and libration in three dimensions

    Full text link
    Motivated by the dynamics of resonance capture, we study numerically the coorbital resonance for inclination180 >=I>=0 in the circular restricted three-body problem. We examine the similarities and differences between planar and three dimensional coorbital resonance capture and seek their origin in the stability of coorbital motion at arbitrary inclination. After we present stability maps of the planar prograde and retrograde coorbital resonances, we characterize the new coorbital modes in three dimensions. We see that retrograde mode I (R1) and mode II (R2) persist as we change the relative inclination, while retrograde mode III (R3) seems to exist only in the planar problem. A new coorbital mode (R4) appears in 3D which is a retrograde analogue to an horseshoe-orbit. The Kozai-Lidov resonance is active for retrograde orbits as well as prograde orbits and plays a key role in coorbital resonance capture. Stable coorbital modes exist at all inclinations, including retrograde and polar obits. This result confirms the robustness the coorbital resonance at large inclination and encourages the search for retrograde coorbital companions of the solar system's planets.Comment: accepted for publication in Celestial Mechanics and Dynamical Astronom
    corecore