26 research outputs found

    Relationship between chronotropic incompetence and β-blockers based on changes in chronotropic response during cardiopulmonary exercise testing

    Get PDF
    AbstractBackgroundChronotropic incompetence (CI), an attenuated heart rate (HR) response to exercise, is common in patients with cardiovascular disease. The aim of this study was to assess changes in the chronotropic response (CR) during cardiopulmonary exercise testing (CPET) in patients undergoing cardiac rehabilitation and investigate the effects of β-blockers.MethodsPatients undergoing cardiac rehabilitation performed CPET. Failure to achieve 80% of the age-predicted maximal HR (APMHR) defined CI. Values of the metabolic chronotropic relationship (MCR) were calculated from the ratio of the HR reserve to metabolic reserve at 4 stages, warm-up (MCR-Wu), anaerobic threshold (MCR-AT), respiratory compensation (MCR-Rc), and peak point (MCR-Pk), using the Wilkoff model. In patients who showed an increase in MCR at ≥3 of the 4 exercise stages, CR was considered to have improved.ResultsPatients with high BNP levels (≥80pg/ml) had a lower MCR at all stages compared with those with low BNP levels (<80pg/ml). Of the 80 patients, 47 showed an increase in both peak VO2 and AT, and of these 31 (66.0%) were taking β-blockers. Improvement in CR was observed in 30 of 47 patients with CI, and 70% of these were taking β-blockers. In patients not taking β-blockers, MCR-AT was lower than MCR-Rc, whereas in those taking β-blockers MCR-AT was higher than MCR-Rc.ConclusionsAn attenuated HR response may occur during the early stages of exercise. The HR response according to the presence or absence of β-blockers is clearly identifiable by comparing MCR-AT and MCR-Rc using the Wilkoff model

    Carbon Isotope and Isotopomer Fractionation in Cold Dense Cloud Cores

    Full text link
    We construct the gas-grain chemical network model which includes carbon isotopes (12C and 13C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have the CX/13CX ratios greater than the elemental abundance ratio of [12C/13C]. On the other hand, molecules formed from CO molecules have the CX/13CX ratios smaller than the [12C/13C] ratio. We reproduce the observed C13CH/13CCH ratio in TMC-1, if the isotopomer exchange reaction, 13CCH + H C13CH + H + 8.1 K, proceeds with the forward rate coefficient kf > 10^-11 cm3 s-1. However, the C13CS/13CCS ratio is lower than that observed in TMC-1. We then assume the isotopomer exchange reaction catalyzed by the H atom, 13CCS + H C13CS + H + 17.4 K. In the model with this reaction, we reproduce the observed C13CS/13CCS, CCS/C13CS and CCS/13CCS ratio simultaneously.Comment: 38 pages, 11 figures, 4 tables, accepted for publication in Astrophysical Journa

    A Study of a Food Community that Supports Life in the Shrinking Society : Community Dining as a Core of the Local Community

    No full text

    注釈史上の『源氏物語』(要旨)

    No full text

    Relationship between chronotropic incompetence and β-blockers based on changes in chronotropic response during cardiopulmonary exercise testing

    No full text
    Chronotropic incompetence (CI), an attenuated heart rate (HR) response to exercise, is common in patients with cardiovascular disease. The aim of this study was to assess changes in the chronotropic response (CR) during cardiopulmonary exercise testing (CPET) in patients undergoing cardiac rehabilitation and investigate the effects of β-blockers. Patients undergoing cardiac rehabilitation performed CPET. Failure to achieve 80% of the age-predicted maximal HR (APMHR) defined CI. Values of the metabolic chronotropic relationship (MCR) were calculated from the ratio of the HR reserve to metabolic reserve at 4 stages, warm-up (MCR-Wu), anaerobic threshold (MCR-AT), respiratory compensation (MCR-Rc), and peak point (MCR-Pk), using the Wilkoff model. In patients who showed an increase in MCR at ≥ 3 of the 4 exercise stages, CR was considered to have improved. Patients with high BNP levels (≥ 80 pg/ml) had a lower MCR at all stages compared with those with low BNP levels (< 80 pg/ml). Of the 80 patients, 47 showed an increase in both peak VO2 and AT, and of these 31 (66.0%) were taking β-blockers. Improvement in CR was observed in 30 of 47 patients with CI, and 70% of these were taking β-blockers. In patients not taking β-blockers, MCR-AT was lower than MCR-Rc, whereas in those taking β-blockers MCR-AT was higher than MCR-Rc. An attenuated HR response may occur during the early stages of exercise. The HR response according to the presence or absence of β-blockers is clearly identifiable by comparing MCR-AT and MCR-Rc using the Wilkoff model
    corecore