47 research outputs found

    Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods

    Full text link
    In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options

    Cyclic changes in sensations to painful stimuli in migraine patients

    Get PDF
    Introduction Migraine is characterized by cycling phases (interictal, preictal, ictal and postictal) with differing symptoms, while in chronic tension type headache pain phases are fluctuating. The question we asked is whether these phases are associated with changes in parameters of somatosensation and axon-reflex erythema. Methods Patients with episodic migraine and chronic tension type headache were examined psychophysically in the interictal, preictal and ictal phase and healthy subjects on five different test days. Thresholds and suprathreshold ratings of pressure and electrical pain were assessed on three different regions of the head. In migraine patients and in healthy controls, electrically induced axon-reflex erythema was measured in the area of the first trigeminal branch. All migraine patients filled out questionnaires about prodromal symptoms at every visit. Results The axon-reflex erythema was always larger in patients with migraine in contrast to healthy subjects. The pressure pain threshold was lower in migraine patients and chronic tension type headache in comparison to healthy subjects. Electrical pain thresholds did not differ between headache patients and healthy subjects and showed no changes between the phases. However, suprathreshold pain ratings showed less habituation solely in the preictal phase of migraine. The number of prodromal symptoms in migraine patients was increased in the preictal and ictal phase. Discussion Reduced habituation was the unique sign of the preictal phase in migraine patients, independently of prodromal symptoms, whereas a larger axon-reflex erythema and higher pressure pain sensitivity are constitutional and non-phase dependent properties of migraine. Reduced inhibitory mechanisms in the preictal phase may contribute to trigger headache attacks in migraine

    PyDapsys: an open-source library for accessing electrophysiology data recorded with DAPSYS

    Get PDF
    In the field of neuroscience, a considerable number of commercial data acquisition and processing solutions rely on proprietary formats for data storage. This often leads to data being locked up in formats that are only accessible by using the original software, which may lead to interoperability problems. In fact, even the loss of data access is possible if the software becomes unsupported, changed, or otherwise unavailable. To ensure FAIR data management, strategies should be established to enable long-term, independent, and unified access to data in proprietary formats. In this work, we demonstrate PyDapsys, a solution to gain open access to data that was acquired using the proprietary recording system DAPSYS. PyDapsys enables us to open the recorded files directly in Python and saves them as NIX files, commonly used for open research in the electrophysiology domain. Thus, PyDapsys secures efficient and open access to existing and prospective data. The manuscript demonstrates the complete process of reverse engineering a proprietary electrophysiological format on the example of microneurography data collected for studies on pain and itch signaling in peripheral neural fibers

    odML-Tables as a Metadata Standard in Microneurography

    Get PDF
    Metadata is essential for handling medical data according to FAIR principles. Standards are well-established for many types of electrophysiological methods but are still lacking for microneurographic recordings of peripheral sensory nerve fibers in humans. Developing a new concept to enhance laboratory workflows is a complex process. We propose a standard for structuring and storing microneurography metadata based on odML and odML-tables. Further, we present an extension to the odML-tables GUI that enables user-friendly search functionality of the database. With our open-source repository, we encourage other microneurography labs to incorporate odML-based metadata into their experimental routines

    Analgesic treatment of ciguatoxin-induced cold allodynia

    Get PDF
    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Na-v responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Na(v)1.2 and Na(v)1.3, but not Na(v)1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the K(v)7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Na(v)1.6, Na(v)1.7, or Na(v)1.8, indicating cold allodynia might be more complex than simple activation of Na-v channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. (C) 2013 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved

    Peripheral signaling pathways contributing to non-histaminergic itch in humans

    Get PDF
    BACKGROUND: Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS: Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens ÎČ-alanine, BAM 8-22 and cowhage extract. RESULTS: The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not ÎČ-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by ÎČ-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and ÎČ-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by ÎČ-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION: Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade

    Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation

    Get PDF
    Skin conductance responses (SCR) are increasingly analyzed with model-based approaches that assume a linear and time-invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non-SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non-SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question

    Changes in Ionic Conductance Signature of Nociceptive Neurons Underlying Fabry Disease Phenotype

    No full text
    The first symptom arising in many Fabry patients is neuropathic pain due to changes in small myelinated and unmyelinated fibers in the periphery, which is subsequently followed by a loss of sensory perception. Here we studied changes in the peripheral nervous system of Fabry patients and a Fabry mouse model induced by deletion of a-galactosidase A (Gla(-/0)). The skin innervation of Gla(-/0) mice resembles that of the human Fabry patients. In Fabry diseased humans and Gla(-/0) mice, we observed similar sensory abnormalities, which were also observed in nerve fiber recordings in both patients and mice. Electrophysiological recordings of cultured Gla(-/0) nociceptors revealed that the conductance of voltage-gated Na+ and Ca2+ currents was decreased in Gla(-/0) nociceptors, whereas the activation of voltage-gated K+ currents was at more depolarized potentials. Conclusively, we have observed that reduced sensory perception due to small-fiber degeneration coincides with altered electrophysiological properties of sensory neurons

    “MigraineMonitor” – Towards a System for the Prediction of Migraine Attacks using Electrostimulation

    No full text
    Migraine attacks can be accompanied by many different symptoms, some of them appearing within 24 hours before the onset of the headache. In previous work, reduced habituation to an electrical pain stimulus at the head was observed in the pre-ictal phase within 24 hours before the headache attack. Based on these results, this work presents an application to track influence factors on migraine attacks and an Arduino-based control unit which replaces the traditional approach of manual electrical stimulation. The usability of both components of the project was evaluated in separate user studies. Results of the usability study show a good acceptance of the systems with a mean SUS score of 92.4. Additionally, they indicate that the developed control unit may substitute the current manual electrical stimulation. Overall, the designed system allows standardized repeatable measurements and is a first step towards the home-use of a device for establishing a new method for migraine prediction
    corecore