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Abstract
Skin conductance responses (SCR) are increasingly analyzed with model-based
approaches that assume a linear and time-invariant (LTI) mapping from sudomotor
nerve (SN) activity to observed SCR. These LTI assumptions have previously been
validated indirectly, by quantifying how much variance in SCR elicited by sensory
stimulation is explained under an LTI model. This approach, however, collapses
sources of variability in the nervous and effector organ systems. Here, we directly
focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural
recording experiment, we simultaneously track SN activity and SCR. This allows
assessing the SN/SCR relationship but possibly suffers from interfering activity of
non-SN sympathetic fibers. In an intraneural stimulation experiment under regional
anesthesia, such influences are removed. In this stimulation experiment, about 95%
of SCR variance is explained under LTI assumptions when stimulation frequency is
below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording
experiment, explained SCR variance is lower, possibly indicating interference from
non-SN fibers, but higher than in our previous indirect tests. We conclude that LTI
systems may not only be a useful approximation but in fact a rather accurate descrip-
tion of biophysical reality in the SN/SCR system, under conditions of low baseline
activity and sporadic external stimuli. Intraneural stimulation under regional anesthe-
sia is the most sensitive method to address this question.

KEYWORD S

microneurography, psychophysiological model, skin conductance, sudomotor nerve, sympathetic nervous

system

1 | INTRODUCTION

Skin conductance responses (SCR) are often measured to
make statements about psychological processes such as cog-
nitive load, emotional arousal, threat prediction, or motor
preparation (Boucsein, 2012). Such inference is traditionally
embodied in operational methods by which some data fea-
tures are taken as indicators of the psychological process.
These methods imply models of how SCR are generated

(Bach & Friston, 2013). Model-based analysis makes such
implicit models transparent and explicit in mathematical form
(Alexander et al., 2005; Bach, Flandin, Friston, & Dolan,
2009, 2010; Benedek & Kaernbach, 2010a, 2010b; Greco,
Valenza, Lanata, Scilingo, & Citi, 2015; Lim et al., 1997).
This allows estimating parameters of the assumed psycholog-
ical process from measured data. Probabilistic estimation of
psychological states, as, for example, embodied in the Psy-
chophysiological Modelling (PsPM) framework, can furnish
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higher signal-to-noise ratio than operational methods (Bach,
2014; Bach, Daunizeau, Friston, & Dolan, 2010; Bach, Dau-
nizeau, Kuelzow, Friston, & Dolan, 2011; Bach et al., 2009;
Bach, Friston, & Dolan, 2010, 2013; Bach & Staib, 2015;
Staib, Castegnetti, & Bach, 2015). Such enhanced sensitivity
motivates further development of this approach.

Since Alexander et al.’s (2005) work, all published mod-
els have split the relation between psychological process and
SCR into two systems. The first is a neural system that trans-
forms a psychological process into firing bursts of the periph-
eral sudomotor nerve (SN). The second is a peripheral
(effector organ) system that translates SN bursts into actual
SCR and summarizes the activity of SN end terminals, neuro-
transmitter diffusion, and the operation of sweat glands
(Boucsein, 2012). While assumptions about the neural pro-
cess are heterogeneous, all approaches converge in modeling
the SN/SCR mapping as a linear time-invariant (LTI) system.
This is a system with two defining properties: first, the output
does not explicitly depend on time (time invariance), and sec-
ond, the response to several inputs is the sum of the responses
to the individual inputs (linearity). An LTI system is unam-
biguously specified by its impulse response function (RF),
that is, the output to a very brief input. If the system is fully
known, biophysical relations can be exploited to analytically
derive a RF (e.g., for fMRI: Buxton, Wong, & Frank, 1998).
Such RF has also been proposed for SCR (Alexander et al.,
2005; Benedek & Kaernbach, 2010a, 2010b; Greco et al.,
2015). However, a paucity of knowledge on sweat gland bio-
physics may imply that these RF do not accurately reflect
actual SCR. To mitigate this concern, an alternative approach
is to construct a phenomenological RF on a large database of
recorded SCR (Bach et al., 2009; Bach, Flandin et al., 2010;
Bach, Friston, & Dolan, 2010). Such approach has also been
harnessed successfully for modeling cardiac (Castegnetti
et al., 2016; Paulus, Castegnetti, & Bach, 2016), pupil (Korn
& Bach, 2016; Korn, Staib, Tzovara, Castegnetti, & Bach,
2017), respiratory (Bach et al., 2016; Castegnetti, Tzovara,
Staib, Gerster, & Bach, 2017), and startle eyeblink responses
(Khemka, Tzovara, Gerster, Quednow, & Bach, 2017).

Regardless of the RF specification, such models can only
be successfully applied if the basic LTI formalism constitutes a
reasonable approximation to biophysical reality. The fact that
statistical sensitivity of model-based approaches converges
with, or overtakes, operational approaches (which do not make
such strict assumptions) can be taken to tentatively suggest that
LTI assumptions are valid for SCR. However, in the past, the
validity of linear models for SN/SCR relationship has some-
times been questioned, including even the informal and loose
models used in operational analysis. This criticism was mainly
on the observation that the relation between SN and SCR ampli-
tude can be variable (Bini, Hagbarth, Hynninen, & Wallin,
1980), and that repeated SN stimulation can lead to SCR with

different shapes (Kirno, Kunimoto, Lundin, Elam, & Wallin,
1991; Kunimoto, Kirno, Elam, Karlsson, & Wallin, 1992a,
1992b; Kunimoto, Kirno, Elam, & Wallin, 1991). Yet, such
LTI violations have so far not been quantified, and it is therefore
not known to what extent and under what circumstances they
would hamper the application of LTI models.

Our previous indirect tests of LTI assumptions have built
on an additional neural assumption, namely, that brief sensory
events cause brief SN firing with a constant latency, as sug-
gested by direct SN recordings (Nishiyama, Sugenoya,
Matsumoto, Iwase, & Mano, 2001). Thus, we have measured
the linearity and time invariance of SCR to brief sensory
events (Bach, Flandin et al., 2010). However, this approach
cannot distinguish LTI violations in the effector organ system
and deviations from the assumptions about the neural system,
and thus provides only an upper bound on effector organ LTI
violations. This motivates the present study in which we capi-
talize on two invasive methods to directly assess the effector
organ, and quantify the extent of LTI violations.

The first assessment relies on simultaneous intraneural and
SCR recordings (Vallbo, Hagbarth, Torebjork, & Wallin, 1979).
This approach directly assesses the SN/SCR relationship. How-
ever, it is challenging to isolate the activity of SN fibers from
neighboring ones with a different bursting profile (e.g., vasomo-
tor, piloerector, or lipomotor; Macefield, Elam, & Wallin, 2002;
Macefield & Wallin, 1996). Hence, intraneural recording techni-
ques will again overestimate LTI violations, but they may use-
fully complement the indirect approach outlined above.

A second possibility of exploring the effector organ sys-
tem’s properties is engendered by intraneural SN stimulation
under elimination of spontaneous peripheral nerve activity.
This can be achieved by stimulating brachial nerves distal to
brachial plexus anesthesia (Wallin & Elam, 1997).

In sum, the two invasive together with previously used
noninvasive methods of testing LTI assumptions are influ-
enced by different sources of noise. Hence, they may provide
a convergent estimation of the extent to which LTI assump-
tions are fulfilled. In the present study, we combined the
intraneural recording and intraneural stimulation approaches
to quantitatively assess the variance in SCR that is explained
in an LTI model of the SN/SCR relationship.

2 | METHOD

2.1 | Experiment 1: Intraneural recordings

2.1.1 | Participants and design

We simultaneously recorded SN activity and SCR elicited by
aversive sounds, and by deviant sounds in an oddball task.
Seven healthy and unmedicated volunteers (4 male, 3 female,
mean age6 SD: 23.76 4.0 years, range 19–29) were recruited
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from the general population and received monetary compensa-
tion for their participation. All participants gave written
informed consent, and the study was approved by the local
ethics committee.

2.1.2 | Stimulation

For each participant, 20 aversive broadband white noise sounds
of 1 s length (10 ms onset and offset ramp, 95 dB sound pres-
sure level) were delivered via headphones. For one participant,
the procedure was repeated three times with breaks in between,
such that this participant received overall 60 sounds. Events
were separated by at least 30 s in order to unambiguously
define SCR tails. Participants were tasked to press a key on a
computer keyboard whenever they heard a sound.

Next, pure sinusoidal sounds with duration of 50 ms
were delivered via headphones once per second, and partici-
pants were instructed to press a key when they heard a devi-
ant sound. Standards were pitched at 440 Hz and oddballs at
660 Hz. Ten oddballs were played per experiment and con-
stituted our events of interest. There were at least 30 stand-
ards after any oddball; the 31st–40th sounds after any
oddball were equally likely to be the next oddball. The 35
first and 35 last sounds were standards.

Auditory stimulation was delivered via headphones
(HD 518, Sennheiser Electronic GmbH & Co., Wedemark,
Germany). All experiments were programmed in Cogent
(Version 2000v1.25, www.vislab.ucl.ac.uk/Cogent) on
MATLAB (Version 6.5; MathWorks; Natick, MA), and run
on a personal computer with a Pentium 4 processor and a
SoundMax soundcard (Analog Devices, Norwood, MA).

2.1.3 | Skin conductance recording

Skin conductance was recorded on the dorsal region of the right
foot using 8-mm Ag/AgCl cup electrodes (EL258, Biopac Sys-
tems Inc., Goleta, CA) and using 0.5% NaCl electrode paste
(GEL101; Biopac Systems Inc.; Hygge & Hugdahl, 1985).
This region is not standard for SCR recordings but allowed easy
access to the efferent C fibers. The signal was recorded using a
Coulbourn Lablink V system with an isolated skin conductance
coupler (V15-17 and V71-23, Coulbourn Instruments, Allen-
town, PA). The output of the coupler was digitized with a sam-
pling rate of 100 Hz (Micro1401, Cambridge Electronic
Design, Cambridge, UK) and recorded (Spike2, Cambridge
Electronic Design). Temperature and relative humidity of the
experimental room were between 24.2–278C and 35–48.3%.

2.1.4 | Intraneural recording

Standard techniques were employed to record from C fibers
in the peroneal nerve (Vallbo et al., 1979). We targeted the

superficial branch of the common peroneal nerve proximal to
the ankle. When the tip of the recording electrode had
reached a stable position in a cutaneous nerve fascicle, the
skin field innervated by this fascicle was mapped by gently
stroking the skin and listening to the high-pitched sound
from multifiber discharges in low threshold mechanosensi-
tive A fibers. Neural responses were digitized with a sam-
pling rate of 10 kHz (Micro 1401) and recorded (Spike2).

Stimulus onset was signaled by TTL pulses via the stim-
ulus computer’s parallel port and recorded together with the
other data.

2.1.5 | Data preprocessing

Data analysis was carried out in MATLAB 8.6 (MathWorks)
using PsPM 3.1 routines (pspm.sourceforge.net) and custom
code that is available from the authors.

Skin conductance data were filtered with 1st order high-
pass (0.0159 Hz, corresponding to a time constant of 10 s) and
low-pass (5 Hz) Butterworth filters, z-transformed to account
for intersubject variability, and downsampled to 10 Hz, in line
with literature recommendations (Boucsein, 2012; Boucsein
et al., 2012) and previous work (Bach, Flandin et al., 2010).

Intraneural recordings were preprocessed similarly to
previous studies (Vallbo et al., 1979). First, we filtered with
a 398th order equiripple direct-form FIR band-pass filter
(300–4000 Hz) and z-transformed. Then, a leaky integrator
with a time constant of 100 ms was applied for burst detec-
tion in neuronal activity. The integrated signal was down-
sampled to 10 Hz and linearly detrended on 5-s intervals to
remove drift in the baseline (Figure 1).

We constructed data epochs containing the 5 s preceding
and 25 s following each event onset. Data from one subject
was excluded due to strong noise in SN signal. Eight individ-
ual epochs from the remaining participants were excluded
due to poor SN signal quality (i.e., clipping). To derive
canonical responses, we averaged the data across all epochs
of the same event type from all participants, or across all
epochs of the same event type from each individual partici-
pant. In contrast to previous work (Bach et al., 2009; Bach,
Flandin et al., 2010), we used averages rather than principal
components to account for a lower signal-to-noise ratio.

2.2 | Experiment 2: Intraneural stimulation

2.2.1 | Participants and design

We reanalyzed data from previously published experiments
(Kirno et al., 1991; Kunimoto et al., 1991) in which SCR
were elicited by intraneural SN stimulation. Four healthy and
unmedicated female volunteers (age range 24–49 years) were
recruited from the general population and received monetary
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compensation for their participation. All participants gave
written informed consent, and the study was approved by the
local ethics committee.

2.2.2 | Intraneural stimulation

Stimulation was performed as described previously (Kirno
et al., 1991). In short, a plastic cannula for injection of a local
anesthetic was inserted into the left axilla and placed within
the sheath surrounding the axillary artery and nerves. A tung-
sten microelectrode was then inserted into the median nerve
2–3 cm proximal to the wrist, and a similar reference electrode
was placed subcutaneously a few centimeters away. A nerve
fascicle innervating the index or the middle finger was
impaled. Axillary nerve blockade was induced by injection of
30–35 mL of mepivacaine into the axillary cannula in order to
completely inhibit spontaneous or evoked SCR. The peripheral
median nerve was then stimulated at various frequencies. We
analyzed stimulation frequencies between 0.1 Hz and 10 Hz.

2.2.3 | Recording

SCR was measured with Ag/AgCl electrodes from the area
innervated by the stimulated fascicle with a Van Gogh

galvanic skin reflex module that used a rise time constant of
0.3 s and a decay time of 3 s to record the first derivative of
the skin conductance (Lidberg & Wallin, 1981). The signal
was high-pass filtered with 0.7 Hz cutoff.

2.2.4 | Data preprocessing

Data analysis was carried out using PsPM 3.1 in MATLAB
8.6 and custom code available from the authors.

The signal was first integrated to approximate the skin
conductance response, by subtracting the mean and cumula-
tively summing the discretized signal. The reconstructed
SCR signal was filtered with first-order band-pass (0.0159
Hz–5 Hz) Butterworth filter, z-transformed, and down-
sampled to 10 Hz sampling rate.

SN stimulation rate (SR) was variable over time. We
decomposed the SCR signal into 16 epochs according to
stimulation rate. One epoch was excluded due to electrode
malfunction. This resulted in 6 epochs with �0.1 Hz stimula-
tion, 3 epochs with �0.2 Hz, 1 epoch with �0.5 Hz, 1 epoch
with �1 Hz, 2 epochs with �1.5 Hz, and 2 epochs with �10
Hz. These 10 Hz epochs were not analyzed as this stimula-
tion frequency exceeds by far the rate of SN bursts under
physiological conditions. Each epoch contained on average
39 (10–58) events at �0.1 Hz stimulation, 77 (68–93) events
at 0.19–0.6 Hz stimulation, and 180 (56–267) events at
higher stimulation rates.

2.3 | Modeling

Observed responses were approximated with analytic func-
tions. SN was fitted with a Gaussian function:

SN tð Þ 5 u tð Þ 5
A
ffiffiffiffiffiffi

2p
p

r
e2

t2lð Þ2
2r2 1 c: (1)

To estimate the parameters of this function, we used ordi-
nary least squares (OLS) minimization and a Nelder-Mead
search algorithm as implemented in the MATLAB function
fminsearch. SCR was fitted with a canonical skin conduct-
ance response function (SCRF) embodied in a third-order
constant-coefficient inhomogeneous linear ordinary differen-
tial equation (ODE), in line with our previous approach
(Bach, Daunizeau et al., 2010; Bach et al., 2011; Staib et al.,
2015):

SCR tð Þ 5 x

&x 1 #1€x 1 #2 _x 1 #3x 1 u t 2 #4ð Þ 5 0: (2)

Parameters of this equation were estimated by free
energy minimization in a variational Bayes algorithm as
implemented in the toolbox VBA (Daunizeau, Adam, & Rig-
oux, 2014) and included in PsPM.

160 170 180 190
-5

0

5
Raw signal

160 170 180 190
Time [s]

0

0.5

1

1.5
Integrated signal

FIGURE 1 Example of an intraneural recording. The integrated
nerve signal reflects the amount of multiunit activity
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For Experiment 1, we averaged epochs with events of
the same type, and minimum-corrected the SCR average to
account for skin conductance level that may be maintained
without SN firing. We estimated response function parame-
ters on these averages, by using the averaged SN signal as
input to the ODE. This procedure was peformed either on
the average from all participants, to quantify variance
explained by a canonical RF, or on averages from individual
participants, to quantify additional variance explained under
an LTI model but with a subject-specific RF. Notably, for
some participants and event types, the resulting RF explained
less variance in the individual epochs than the canonical RF.
For these subjects, we used the variance explained with the
canonical RF as a conservative estimate of the maximum
variance that can be explained under LTI assumptions.

Next, we computed how much variance in the (epochwise
minimum-corrected) SCR data could be explained under an
LTI model. We convolved the SN activity for each individual
epoch with the SCRF. Because the gain factor of the SCRF is
unknown, it was estimated using OLS linear regression. We
computed the regression either across all epochs for each partic-
ipant (assuming a fixed gain factor), or on a epoch-by-epoch
basis (assuming a variable gain factor), and then quantified
explained variance. Finally, we analyzed the estimated response
gain per epoch in a linear mixed effects model (package lme4 in
R) containing terms for event type (aversive stimulation, odd-
ball), repetition (1–3 for one participant with 60 events, and 1
for the others), and epoch, as well as a random intercept. We
first modeled epoch as an omnibus effect (i.e., numerator
degrees of freedom equal the number of epochs per repetition,
minus one), and in an exploratory analysis, more specifically
we investigated a linear effect of epoch (i.e., df5 1).

In Experiment 2, we analyzed data epochs at particular
stimulation frequencies. While in Experiment 1 there was
one event per epoch, here the data contained responses to
multiple stimulations per epoch that would therefore overlap,
making average responses difficult to interpret. Therefore,
SCRF parameters and response gain were simultaneously
estimated using the VBA algorithm. We analyzed each
epoch individually, all epochs for each participant, or all

epochs from all participants. We modeled elicited SN activ-
ity (i.e., input into the ODE) as a series of Gaussian func-
tions, centered on the (square wave) stimulations and with a
standard deviation of 0.3 s. This differentiable approximation
of the sudomotor input was chosen to facilitate the estima-
tion; note that the truly elicited sudomotor burst will not be a
square wave either. This procedure directly yielded the
explained variance in the signal. Time changes in estimated
response gain were analyzed in a linear mixed model as
described above.

3 | RESULTS

3.1 | Experiment 1: Intraneural recordings

Extracted SN and SCR were averaged over all participants
for each experiment and are shown in Figure 2. Averaged
event-related SCR from both experiments closely resembled
results from a previous study using a larger data set (Bach,
Flandin et al., 2010). We analytically approximated the aver-
age SCR, and the approximation also resembled the one
from previous work (Figure 2, parameters in Table 1). This
suggests that SCR elicited on the dorsal foot in the current
invasive study are comparable to those elicited in more com-
mon psychophysiological experiments with standard thenar/
hypothenar recordings.

Averaged SN activity was modeled by a Gaussian func-
tion (Figure 2, parameters in Table 1). Standard deviation of
the Gaussian was, for the two event types, 0.31 s and 0.25 s.
On an epoch-by-epoch level, this Gaussian model explained
77.35% (aversive sounds) or 66.14% (oddball events) of SN
variance when built across all participants, and 78.88% (aver-
sive sounds) or 79.49% (oddball events) when optimizing the
model per participant.

Next, we asked how much of the variance in the SCR
signal could be explained by an LTI system that takes SN
activity as input and that is described by the modeled SCRF.
To do so, we convolved the epochwise SN with the SCRF,
and compared it to the epochwise measured SCR (Figure 3).

-5 0 10 15 20 25
Time after stimulus onset [s]

0

0.5

1

Aversive

-5 0 10 15 20 25
0

0.5

1

Oddball
SN Mod. SN SCR Mod. SCR Bach et al. (2010)

5 5

FIGURE 2 Experiment 1. Stimulus-evoked SN and SCR, averaged over all participants and trials, together with the modeled SN/SCR (Mod. SN,
Mod. SCR) and a previous SCRmodel (Bach, Flandin et al., 2010). To account for the previously determined average delay between foot recording (this
study) and hand recording (previous model), the latter response function was shifted in time by 1.3 s (Bach, Flandin et al., 2010)
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Because the interevent interval is long and there is thus
(approximately) no summation of responses, this primarily
addresses the question of time invariance. We first estimated
the response gain for each epoch separately. Using a canoni-
cal SCRF across all participants, our model explained
67.84% (aversive sounds) and 56.30% (oddball events) of
SCR variance. With an individual SCRF optimized per par-
ticipant, the model explained 74.40% (aversive sounds) and
60.97% (oddball events) of the variance. When assuming a
constant response gain across all events, explained variance
was dramatically smaller (canonical/individual SCRF for
aversive sounds: 39.48%/45.75%, for oddball events 34.04%/
37.30%). Electrode drift (away from the nerve) and saturat-
ing sweat gland system would predict an increase or decrease
of the response gain, respectively, over time. We investigated
in a linear mixed effects model whether there was any sys-
tematic impact of event repetition on the estimated gain per

event, across all participants and event types. This relation
was not significant, F(19, 173)5 1.00, p5 .45. We tested
the linear term in a separate exploratory model that did not
contain any higher-order polynomial terms for event repeti-
tion. In this model, event repetition showed a significantly
negative linear relationship with response gain, F(1, 191)5
7.07, p5 .0085. It is therefore possible that habituation in
the peripheral (sweat gland) system (but not electrode drift
away from the nerve) explains some of the variability in the
response gain over trials.

3.2 | Experiment 2: Intraneural stimulation

SCR for each epoch were fitted with a LTI system that takes
a series of Gaussian-shaped SN bursts as input (parameters
in Table 2). Epochs with stimulation rate below 0.6 Hz could
be fitted in a meaningful way, and the estimated SCRF was
consistent with previous findings and with Experiment 1
(Figure 4). At higher stimulation rates, the SCR looked qual-
itatively different: high SCR in the first few seconds of the
epoch, and much lower activity later on. This meant that the
SCRF fitted the first SCR but not later ones with lower
amplitude and rather different shape. Consequently, the esti-
mated SCRF was qualitatively different from the ones
obtained at slower stimulation frequencies. This may indicate

TABLE 1 Model parameters from Experiment 1

ODE parameters for SCR Gaussian parameters for SN

Parametera Aversive Oddball Parameterb Aversive Oddball

#1 1.3277 1.5457 m 1.6850 1.6785

#2 1.1205 1.9595 r 0.3051 0.2471

#3 0.1084 0.1336 A 0.7814 0.6589

#4 20.4265 0.3001 c 0.1567 0.0000

a#1–#3 determine the shape of the SCRF. #4 determines the delay with respect to an eliciting SN burst and depends on the precise distance of the intraneural
recording electrode from the skin; hence, it has no generalizable interpretation.
br describes the shape (dispersion) and m the delay of an SN burst with respect to an eliciting external stimulus. Delay depends on recording location along the
nerve. A is the amplitude, which depends on recording settings, and c is the baseline SN activity.

Aversive SCR Oddball SCR
0

0.5

1

Va
ria

nc
e 

ra
tio

Common variance
Between subjects
Within subjects

FIGURE 3 Experiment 1. Ratio of variance in SCR signal, for an
aversive sound stimulation and an oddball stimulation. Bar charts show
variance components under the assumption of a variable gain factor.
Black: Common variance, explained by a canonical SCRF across all par-
ticipants. Gray: Between-subjects variance, additionally explained when
using one SCRF per participant.White:Within-subject variance, unex-
plained by the LTI models. Box plots: Variance explained with one SCRF
per participant, for each participant

TABLE 2 Model parameters from Experiment 2

Parametera
Low
stimulation rate

Medium
stimulation rate

#1 2.3051 2.2433

#2 2.5653 4.2898

#3 0.1517 0.5584

#4 20.0058 20.1775

a#1– #3 determine the shape of the SCRF. #4 determines the delay with
respect to an eliciting SN burst and depends on the precise location of the
intraneural stimulation electrode; hence, it has no generalizable interpretation.
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nonlinearities in the peripheral system. We then quantified
this discrepancy. For each epoch, we computed a regression
of the estimated SCRF onto our previous SCRF model
(Bach, Flandin et al., 2010), and report the shared variance
R2 (Figure 5). At lower frequencies, the estimated SCRF was
similar to the previous model (R26 SD, 84.116 19.13% for
low SR< .12 Hz, 6 epochs; 86.606 15.41% for medium
SR, 0.19<SR< 0.6 Hz, 4 epochs). At higher frequencies
the estimated SCRF was less similar to the previous model
(56.716 25.64%, 3 epochs). We therefore restricted all fur-
ther analyses to epochs below 0.6 Hz stimulation rate. Next,
we addressed how much variance in the SCR data could be
explained under an LTI model, fitting one SCRF per epoch.
The explained variance in the signal was 93.15% or 98.94%,
at stimulation rates of< 0.12 Hz and 0.19–0.6 Hz, respec-
tively. When fitting epochs of similar stimulation rates
together in common models, the explained variance was
somewhat lower (for low or medium stimulation frequency,
81.77% or 82.93%; Figure 6). Participant-wise models for
epochs with similar stimulation rates yielded explained

variance somewhat higher than in the group-level model
(89.76% or 83.57%; Figure 6). When assuming a constant
response gain across all stimulations, explained variance was
drastically smaller (19.5% or 1.8% for a canonical model).

We investigated in a linear mixed model whether there
was any systematic effect of stimulation number on the esti-
mated response gain per stimulation, across all participants
and stimulation rates. In this experiment, both electrode drift
away from the sudomotor fibers, or saturation of the sweat
gland system, could lead to a negative relationship with stim-
ulation repetition. We used all epochs with stimulation fre-
quency below 0.6 Hz for this analysis. This relation was not
significant, F(299, 629)5 0.76, p5 .99. In particular, a neg-
ative linear term in this relation may indicate habituation.
We tested for this in a separate exploratory model that did
not contain any higher-order polynomial terms for stimula-
tion repetition. In this model, stimulation repetition showed a
significantly positive linear relationship with response
gain, F(1, 894)5 14.77, p< .001, AIC5 1679.45. We also
modeled the linear effect of time, rather than of stimulation
repetition—this is not the same because the stimulation
frequency differed between epochs. In this analysis, we
confirmed a linear relationship of time with response gain,
F(1, 894)5 10.01, p5 .002, AIC5 1683.41. However, the
AIC difference demonstrates that the model with stimula-
tion repetition fit the data significantly better than the
model with time. Importantly, neither model indicated an
influence of electrode drift nor sweat gland saturation, as
the linear relationship was positive (i.e., higher amplitude
gain later in the epoch).
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4 | DISCUSSION

Model-based SCR analysis rests on assumptions about the
effector organ system that describe how sudomotor action
potential bursts generate measured SCR via acetylcholine
release from nerve terminals, transmitter diffusion, and proc-
esses in the sweat glands. All existing methods base this sys-
tem on the assumptions of linearity and time invariance, but
these have not yet been formally quantified using invasive
methods. Here, we capitalize on intraneural recordings, and
intraneural stimulation under regional anesthesia, to conduct
such a formal test of the LTI model. Three key findings
emerge. In the SN stimulation Experiment 2, we find strong
evidence for the LTI model at low rate of SN burst succes-
sion. When stimulation frequency is below 0.6 Hz (i.e.,
fewer than one burst every 1.7 s), around 95% of the var-
iance in the SCR signal can be explained under LTI assump-
tions. Furthermore, more than 80% can be explained by just
one canonical SCRF for all participants, indicating a high
degree of similarity between individuals. The estimated
SCRF shows good accordance with an SCRF previously
developed from sensory stimulation. At the same time, this
model breaks down when stimulation frequency exceeds 0.6
Hz. In this case, an LTI model can still explain the data—but
the estimated model characteristics (i.e., the SCRF) deviate
from those derived at lower stimulation frequencies, or in
different experiments. This is in itself a violation of the time
invariance principle and indicates nonlinearities in the effec-
tor organ system.

As a second finding, the explained variance under LTI
assumptions in the intraneural recording Experiment 1 was
smaller than in stimulation Experiment 2. On the other hand,
a canonical SCRF explained more variance in Experiment 1
than in our previous indirect tests, which additionally
addressed variability in the neural system (Bach, Flandin
et al., 2010). A possible reason for the higher explained var-
iance in Experiment 2 is that sudomotor and other sympa-
thetic fiber activity could not be separated in Experiment 1,
thus contributing to apparent LTI violations. Furthermore,
the signal-to-noise ratio in the intraneural recordings is by
design lower than in the intraneural stimulation. In both
experiments, the gain factor (i.e., the proportionality constant
between the SN and the SCR signal) was rather variable
across trials. In both experiments, exploratory analysis pro-
vided weak evidence that the gain factor linearly changed
over time, but in a different direction: it decreased in Experi-
ment 1 and increased in Experiment 2. In Experiment 2,
stimulation repetition was a better predictor of response gain
than time. The linear decrease in Experiment 1 may possibly
indicate a saturating sweat gland system, but this was not
confirmed in Experiment 2. A larger proportion of variance
in response amplitudes was unsystematic. Several possible

reasons may account for this. For Experiment 1, in addition
to the SN fibers innervating the skin site from which SCR
were recorded, SN fibers innervating surrounding skin
regions may be corecruited to a variable extent. This would
change the amplitude of the SN but not of the recorded SCR
signal. In reverse, our SN recordings may have missed fibers
innervating the skin region from which we recorded SCR,
again leading to variability in the recorded SN amplitude.
This is aggravated by the method of determining the skin
region innervated by the recorded SN fiber, which was done
based on A-fiber responses to mechanical stimulation—
mechanoreception and SN innervation may not entirely over-
lap. Similarly, in Experiment 2, repeated SN stimulation may
have led to activity in different fibers every time, some of
which may not innervate the skin region from which SCR
were recorded. In summary, these may be reasons why a
model fixing response gain explained data in both experi-
ments worse than a model with variable response gain.

Interestingly, the intraneural recording experiment con-
firmed an earlier assumption—based on nonsystematic
inspection of example data—that sudomotor bursts can be
approximated by a Gaussian function (Bach, Daunizeau
et al., 2010; Bach et al., 2011). The dispersion of this Gaus-
sian was estimated to be 0.3 s in this previous work, which
is in the range of our current result.

As a limitation of our current study, the methods of SCR
measurement in the two experiments were not identical, and
the stimulation frequencies rather different, making a com-
parison of the obtained SCRF difficult. Also, sample sizes
were small, such that generalizability may be limited. Fur-
thermore, because of our peroneal recording method in
Experiment 1, SCR may not be fully comparable to the ones
obtained at more typical SCR recording sites, for example, at
the hand or plantar region of the foot.

We initially argued that three methods—sensory stimula-
tion, microneurography, and direct sudomotor stimulation—
can help test the validity of LTI assumptions. We can now
identify intraneural stimulation under regional anesthesia as
the most sensitive method to do so. Under very controlled
experimental conditions, LTI systems can reliably represent
the SN/SCR relationship as long as stimulation frequency
corresponds to typical psychological or cognitive experi-
ments, that is, well below 1 Hz.
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