6 research outputs found

    Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons

    Get PDF
    Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases

    ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development

    Get PDF
    Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin–antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin–antitoxin family consists of the ε/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin ε. Upon degradation of ε, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. ε/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded ε/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin–antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of ε/ζ toxin–antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense

    YvcK, a protein required for cell wall integrity and optimal carbon source utilization, binds uridine diphosphate-sugars

    No full text
    International audienceIn Bacillus subtilis, Listeria monocytogenes and in two Mycobacteria, it was previously shown that yvcK is a gene required for normal cell shape, for optimal carbon source utilization and for virulence of pathogenic bacteria. Here we report that the B. subtilis protein YvcK binds to Uridine diphosphate-sugars like Uridine diphosphate-Glucose (UDP-Glc) and Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) in vitro. Using the crystal structure of Bacillus halodurans YvcK, we identified residues involved in this interaction. We tested the effect of point mutations affecting the ability of YvcK to bind UDP-sugars on B. subtilis physiology and on cell size. Indeed, it was shown that UDP-Glc serves as a metabolic signal to regulate B. subtilis cell size. Interestingly, we observed that, whereas a yvcK deletion results in the formation of unusually large cells, inactivation of YvcK UDP-sugar binding site does not affect cell length. However, these point mutations result in an increased sensitivity to bacitracin, an antibiotic which targets peptidoglycan synthesis. We thus propose that UDP-GlcNAc, a precursor of peptidoglycan, could be a good physiological ligand candidate of YvcK
    corecore