242 research outputs found

    Inheritance and flexibility of cell polarity : a clue for understanding human brain development and evolution

    Get PDF
    Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex.Peer reviewe

    Structure of the ParM filament at 8.5Å resolution

    Get PDF
    AbstractThe actin-like protein ParM forms the cytomotive filament of the ParMRC system, a type II plasmid segregation system encoded by Escherichia coli R1 plasmid. We report an 8.5Å resolution reconstruction of the ParM filament, obtained using cryo-electron microscopy. Fitting of the 3D density reconstruction with monomeric crystal structures of ParM provides insights into dynamic instability of ParM filaments. The structural analysis suggests that a ParM conformation, corresponding to a metastable state, is held within the filament by intrafilament contacts. This filament conformation of ParM can be attained only from the ATP-bound state, and induces a change in conformation of the bound nucleotide. The structural analysis also provides a rationale for the observed stimulation of hydrolysis upon polymerisation into the filament

    Transgenic Petunia for Iron Deficiency in Alkaline Environments

    Get PDF
    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2′-deoxymugineic acid complex, free 2′-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2′-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse plant species that are found in areas with alkaline conditions

    Metabolic Regulation of Neocortical Expansion in Development and Evolution

    Get PDF
    The neocortex, the seat of our higher cognitive abilities, has expanded in size during the evolution of certain mammals such as primates, including humans. This expansion occurs during development and is linked to the proliferative capacity of neural stem and progenitor cells (NPCs) in the neocortex. A number of cellintrinsic and cell-extrinsic factors have been implicated in increasing NPC proliferative capacity. However, NPC metabolism has only recently emerged as major regulator of NPC proliferation. In this Perspective, we summarize recent insights into the role of NPC metabolism in neocortical development and neurodevelopmental disorders and its relevance for neocortex evolution. We discuss certain human-specific genes and microcephaly-implicated genes that operate in, or at, the mitochondria of NPCs and stimulate their proliferation by promoting glutaminolysis. We also discuss other metabolic pathways and develop a perspective on how metabolism mechanistically regulates NPC proliferation in neocortical development and how this contributed to neocortex evolution.Peer reviewe

    Massive expression of cysteine-containing proteins causes abnormal elongation of yeast cells by perturbing the proteasome

    Get PDF
    The enhanced green fluorescent protein (EGFP) is considered to be a harmless protein because the critical expression level that causes growth defects is higher than that of other proteins. Here, we found that overexpression of EGFP, but not a glycolytic protein Gpm1, triggered the cell elongation phenotype in the budding yeast Saccharomyces cerevisiae. By the morphological analysis of the cell overexpressing fluorescent protein and glycolytic enzyme variants, we revealed that cysteine content was associated with the cell elongation phenotype. The abnormal cell morphology triggered by overexpression of EGFP was also observed in the fission yeast Schizosaccharomyces pombe. Overexpression of cysteine-containing protein was toxic, especially at high-temperature, while the toxicity could be modulated by additional protein characteristics. Investigation of protein aggregate formation, morphological abnormalities in mutants, and transcriptomic changes that occur upon overexpression of EGFP variants suggested that perturbation of the proteasome by the exposed cysteine of the overexpressed protein causes cell elongation. Overexpression of proteins with relatively low folding properties, such as EGFP, was also found to promote the formation of SHOTA (Seventy kDa Heat shock protein-containing, Overexpression-Triggered Aggregates), an intracellular aggregate that incorporates Hsp70/Ssa1, which induces a heat shock response, while it was unrelated to cell elongation. Evolutionary analysis of duplicated genes showed that cysteine toxicity may be an evolutionary bias to exclude cysteine from highly expressed proteins. The overexpression of cysteine-less moxGFP, the least toxic protein revealed in this study, would be a good model system to understand the physiological state of protein burden triggered by ultimate overexpression of harmless proteins

    Structural element responsible for the Fe(III)–phytosiderophore specific transport by HvYS1 transporter in barley

    Get PDF
    AbstractHordeum vulgare L. yellow stripe 1 (HvYS1) is a selective transporter for Fe(III)–phytosiderophores, involved in primary iron acquisition from soils in barley roots. In contrast, Zea mays yellow stripe 1 (ZmYS1) in maize possesses broad substrate specificity, despite a high homology with HvYS1. Here we revealed, by assessing the transport activity of a series of HvYS1–ZmYS1 chimeras, that the outer membrane loop between the sixth and seventh transmembrane regions is essential for substrate specificity. Circular dichroism spectra indicated that a synthetic peptide corresponding to the loop of HvYS1 forms an α-helix in solution, whereas that of ZmYS1 is flexible. We propose that the structural difference at this particular loop determines the substrate specificity of the HvYS1 transporter

    Safety of batteries in insulin pumps

    Get PDF
    Aims/Introduction: We investigated the safety of the batteries and power units used in insulin pumps in Japan. Materials and Methods: A self‐administered questionnaire was sent to the 201 members of the Association for Innovative Diabetes Treatment in Japan. Results: A total of 56 members responded, and among the 1,499 active devices, 66 had episodes of trouble related to the batteries and power units. The ratio of reported troubles to the number of insulin pumps was significantly higher in insulin pumps with a continuous glucose monitoring sensor compared with insulin pumps without a continuous glucose monitoring sensor (odds ratio 2.82, P < 0.05). The cause and the consequences varied. The brands of the batteries varied; alkaline batteries purchased at drug stores and other shops accounted for 19.7%. Termination of battery life within 72 h of use was reported most frequently (50.0%), suspension of the insulin pump (21.2%) and leakage of the battery fluid (4.5%) followed. A total of 53.2% of the reported insulin pumps needed to be replaced, and 37.1% of them recovered after replacement of the battery. Conclusions: As trouble related to the batteries and power units of insulin pumps was frequent, practical guidance should be provided to respective patients regarding the use of reliable batteries, and to be well prepared for unexpected insulin pump failure

    Time-Lapse Imaging Reveals Symmetric Neurogenic Cell Division of GFAP-Expressing Progenitors for Expansion of Postnatal Dentate Granule Neurons

    Get PDF
    Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors
    corecore