17 research outputs found

    Modelling Energy Consumption based on Resource Utilization

    Full text link
    Power management is an expensive and important issue for large computational infrastructures such as datacenters, large clusters, and computational grids. However, measuring energy consumption of scalable systems may be impractical due to both cost and complexity for deploying power metering devices on a large number of machines. In this paper, we propose the use of information about resource utilization (e.g. processor, memory, disk operations, and network traffic) as proxies for estimating power consumption. We employ machine learning techniques to estimate power consumption using such information which are provided by common operating systems. Experiments with linear regression, regression tree, and multilayer perceptron on data from different hardware resulted into a model with 99.94\% of accuracy and 6.32 watts of error in the best case.Comment: Submitted to Journal of Supercomputing on 14th June, 201

    Systems-Based Analysis of the \u3cem\u3eSarcocystis neurona\u3c/em\u3e Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    Get PDF
    Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. IMPORTANCE Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals—including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies

    Local Admixture of Amplified and Diversified Secreted Pathogenesis Determinants Shapes Mosaic \u3cem\u3eToxoplasma gondii\u3c/em\u3e Genomes

    Get PDF
    Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity

    The Microbiome and Tuberculosis: Early Evidence for Cross Talk

    No full text
    Tuberculosis (TB) is an ancient infectious disease of humans that has been extensively studied both clinically and experimentally. Although susceptibility to Mycobacterium tuberculosis infection is clearly influenced by factors such as nutrition, immune status, and both mycobacterial and host genetics, the variable pathogenesis of TB in infected individuals remains poorly understood.Tuberculosis (TB) is an ancient infectious disease of humans that has been extensively studied both clinically and experimentally. Although susceptibility to Mycobacterium tuberculosis infection is clearly influenced by factors such as nutrition, immune status, and both mycobacterial and host genetics, the variable pathogenesis of TB in infected individuals remains poorly understood. During the past two decades, it has become clear that the microbiota—the trillion organisms that reside at mucosal surfaces within and on the body—can exert a major influence on disease outcome through its effects on host innate and adaptive immune function and metabolism. This new recognition of the potentially pleiotropic participation of the microbiome in immune responses has raised the possibility that the microbiota may influence M. tuberculosis infection and/or disease. Similarly, treatment of TB may alter the healthy steady-state composition and function of the microbiome, possibly affecting treatment outcome in addition to other host physiological parameters. Herein, we review emerging evidence for how the microbiota may influence the transition points in the life cycle of TB infection, including (i) resistance to initial infection, (ii) initial infection to latent tuberculosis (LTBI), (iii) LTBI to reactivated disease, and (iv) treatment to cure. A major goal of this review is to frame questions to guide future scientific and clinical studies in this largely unexplored but increasingly important area of TB research

    Polar metabolomics and Bile acid data for Namasivayam 2023

    No full text
    Multi-targeted polar metabolomics data from murine fecal samples is included. Data is in the form of normalized signal intensities Data was filtered via a missing value of 50 % cut-off and a coefficient of variance on the QC samples of 30 % or lower. Data was total sum normalized to and auxillary datasets were stitched to the core dataset via shared signals for metabolites. Further information, incuding methods references, can be found in the associated manuscript.</p

    Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques

    No full text
    Why some but not all individuals infected with Mycobacterium tuberculosis develop disease is poorly understood. Previous studies have revealed an important influence of the microbiota on host resistance to infection with a number of different disease agents. Here, we investigated the possible role of the individual’s microbiome in impacting the outcome of M. tuberculosis infection in rhesus monkeys experimentally exposed to this important human pathogen. Although M. tuberculosis infection itself caused only minor alterations in the composition of the gut microbiota in these animals, we observed a significant correlation between an individual monkey’s microbiome and the severity of pulmonary disease. More importantly, this correlation between microbiota structure and disease outcome was evident even prior to infection. Taken together, our findings suggest that the composition of the microbiome may be a useful predictor of tuberculosis progression in infected individuals either directly because of the microbiome’s direct influence on host resistance or indirectly because of its association with other host factors that have this influence. This calls for exploration of the potential of the microbiota composition as a predictive biomarker through carefully designed prospective studies.The factors that determine host susceptibility to tuberculosis (TB) are poorly defined. The microbiota has been identified as a key influence on the nutritional, metabolic, and immunological status of the host, although its role in the pathogenesis of TB is currently unclear. Here, we investigated the influence of Mycobacterium tuberculosis exposure on the microbiome and conversely the impact of the intestinal microbiome on the outcome of M. tuberculosis exposure in a rhesus macaque model of tuberculosis. Animals were infected with different strains and doses of M. tuberculosis in three independent experiments, resulting in a range of disease severities. The compositions of the microbiotas were then assessed using a combination of 16S rRNA and metagenomic sequencing in fecal samples collected pre- and postinfection. Clustering analyses of the microbiota compositions revealed that alterations in the microbiome after M. tuberculosis infection were of much lower magnitude than the variability seen between individual monkeys. However, the microbiomes of macaques that developed severe disease were noticeably distinct from those of the animals with less severe disease as well as from each other. In particular, the bacterial families Lachnospiraceae and Clostridiaceae were enriched in monkeys that were more susceptible to infection, while numbers of Streptococcaceae were decreased. These findings in infected nonhuman primates reveal that certain baseline microbiome communities may strongly associate with the development of severe tuberculosis following infection and can be more important disease correlates than alterations to the microbiota following M. tuberculosis infection itself

    Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes.

    No full text
    Heme oxygenase-1 (HO-1) is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX), a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.ImportanceThere is no reliable vaccine against tuberculosis (TB), and conventional antibiotic therapy is administered over at least 6&nbsp;months. This prolonged treatment period can lead to noncompliance resulting in relapsed infection as well as the emergence of multidrug resistance. Thus, there is an urgent need for improved therapeutic regimens that can more rapidly and efficiently control M. tuberculosis in infected patients. Here, we describe a potential strategy for treating TB based on pharmacological inhibition of the host heme-degrading enzyme HO-1. This approach results in significantly reduced bacterial burdens in mice, and when administered in conjunction with conventional antibiotic therapy, leads to faster, more effective pathogen clearance without detectable direct effects on the mycobacteria themselves. Interestingly, the effects of HO-1 inhibition on M. tuberculosis infection in vivo are dependent on the presence of an intact host immune system. These observations establish mammalian HO-1 as a potential target for host-directed therapy of TB

    Additional file 6: Figure S6. of Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy

    No full text
    Repeat experiment demonstrating reproducibility of major differences observed during as well as post treatment. a Outline of experimental plan for longitudinal analysis of alterations in the microbiota induced by ATT in Mtb-infected C57BL/6J-CD45a(Ly5a) female mice. Two groups of mice (TB and TB + HRZ) were employed with each group consisting of four animals. Stool sample collection time points are indicated as colored circles (TB, red; TB + HRZ, orange). For the purpose of consistency, the time points shown refer to the month (M) of stool sample collection relative to the date of infection rather than treatment. In the case of the TB + HRZ group, treatment was ceased at M5 and post HRZ samples (yellow circles) were collected at M8. H, Isoniazid; R, Rifampin; Z, Pyrazinamide. b Community diversity in the TB and TB + HRZ animal groups for every stool sample collected was calculated from 16S sequences using Chao1 (left) and Shannon (right) indices. Error bars indicate maximum and minimum values. Significance tests were performed between the corresponding time points in the two groups. *p < 0.05, Wilcoxon-rank sum test. c Principal coordinate (PC) analysis of unweighted (left) and weighted (right) UniFrac distances of the sequences from the animal groups. Each sphere represents a single animal with the size of the sphere referring to the sample collection time point (early to late time points indicated as a gradient in the size of the spheres from small to large). d LEfSe analysis was performed to identify genera that are differentially abundant between the TB and TB + HRZ groups. Taxa significantly enriched in the TB or TB + HRZ groups depicted with red or orange bars, respectively. Data are filtered for p < 0.01 and LDA score >2. n = 4. (PDF 719 kb
    corecore